当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2017-11-27 , DOI: 10.1038/s41565-017-0008-8
Klaas-Jan Tielrooij,Niels C. H. Hesp,Alessandro Principi,Mark B. Lundeberg,Eva A. A. Pogna,Luca Banszerus,Zoltán Mics,Mathieu Massicotte,Peter Schmidt,Diana Davydovskaya,David G. Purdie,Ilya Goykhman,Giancarlo Soavi,Antonio Lombardo,Kenji Watanabe,Takashi Taniguchi,Mischa Bonn,Dmitry Turchinovich,Christoph Stampfer,Andrea C. Ferrari,Giulio Cerullo,Marco Polini,Frank H. L. Koppens

Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1,2,3,4,5,6,7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8,9,10,11,12,13,14,15,16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17,18,19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

中文翻译:

通过电子-双曲声子耦合在范德华堆栈中进行平面外传热

范德华异质结构已成为有前途的构建基块,可提供获得新物理学,新颖的器件功能以及优越的1,2,3,4,5,6,7的电学和光电学性能的途径。热管理,光电检测,发光,数据通信,高速电子设备和光收集等应用程序8,9,10,11,12,13,14,15,16需要对(纳米级)热流有透彻的了解。在这里,使用时间分辨的光电流测量,我们确定了有效的面外能量传输通道,其中石墨烯中的电荷载流子耦合至双曲线声子极化子17,18,19在包封的层状材料中。这种双曲线冷却特别有效,可以为六角形BN提供皮秒级的冷却时间,其中高动量双曲线声子极化子可实现有效的近场能量传输。我们使用不同的控制旋钮来研究这种传热机制,以改变载流子密度和晶格温度,并且发现在没有任何可调整参数的情况下与理论极好的一致性。这些见解可能导致控制范德华力异质结构中热流的能力。
更新日期:2017-11-28
down
wechat
bug