当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2017-11-22 00:00:00 , DOI: 10.1021/acsami.7b14376
Doreen Chan 1 , Yichuan Ding 1 , Reinhold H. Dauskardt 1 , Eric A. Appel 1
Affiliation  

Polymer networks are extensively utilized across numerous applications ranging from commodity superabsorbent polymers and coatings to high-performance microelectronics and biomaterials. For many applications, desirable properties are known; however, achieving them has been challenging. Additionally, the accurate prediction of elastic modulus has been a long-standing difficulty owing to the presence of loops. By tuning the prepolymer formulation through precise doping of monomers, specific primary network defects can be programmed into an elastomeric scaffold, without alteration of their resulting chemistry. The addition of these monomers that respond mechanically as primary defects is used both to understand their impact on the resulting mechanical properties of the materials and as a method to engineer the mechanical properties. Indeed, these materials exhibit identical bulk and surface chemistry, yet vastly different mechanical properties. Further, we have adapted the real elastic network theory (RENT) to the case of primary defects in the absence of loops, thus providing new insights into the mechanism for material strength and failure in polymer networks arising from primary network defects, and to accurately predict the elastic modulus of the polymer system. The versatility of the approach we describe and the fundamental knowledge gained from this study can lead to new advancements in the development of novel materials with precisely defined and predictable chemical, physical, and mechanical properties.

中文翻译:

精确掺杂主缺陷来设计聚合物网络的机械性能

聚合物网络广泛地用于众多应用中,从商品超吸收性聚合物和涂料到高性能微电子和生物材料。对于许多应用,理想的特性是已知的。但是,实现这些目标具有挑战性。另外,由于存在环,精确预测弹性模量一直是一个长期的难题。通过精确地掺杂单体来调节预聚物配方,可以将特定的主要网络缺陷编程到弹性体支架中,而不会改变其最终的化学性质。机械上添加这些主要缺陷的单体,不仅可以理解它们对材料最终机械性能的影响,还可以用作设计机械性能的方法。确实,这些材料具有相同的体积和表面化学性质,但机械性能却大不相同。此外,我们将真实弹性网络理论(RENT)应用于没有环的情况下的主要缺陷情况,从而提供了对由主要网络缺陷引起的聚合物网络中材料强度和破坏机理的新见解,并可以准确地预测聚合物系统的弹性模量。我们描述的方法的多功能性以及从这项研究中获得的基础知识可以导致具有精确定义的和可预测的化学,物理和机械特性的新型材料的开发取得新进展。我们将真实弹性网络理论(RENT)应用于没有环的情况下的主要缺陷情况,从而提供了对由主要网络缺陷引起的聚合物网络中材料强度和破坏机理的新见解,并可以准确地预测弹性聚合物体系的模量。我们描述的方法的多功能性以及从这项研究中获得的基础知识可以导致具有精确定义的和可预测的化学,物理和机械特性的新型材料的开发取得新进展。我们将真实弹性网络理论(RENT)应用于没有环的情况下的主要缺陷情况,从而提供了对由主要网络缺陷引起的聚合物网络中材料强度和破坏机理的新见解,并可以准确地预测弹性聚合物体系的模量。我们描述的方法的多功能性以及从这项研究中获得的基础知识可以导致具有精确定义的和可预测的化学,物理和机械特性的新型材料的开发取得新进展。
更新日期:2017-11-23
down
wechat
bug