当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2017-11-20 00:00:00 , DOI: 10.1021/acssuschemeng.7b02687
Fang Zhao 1 , Dario Cambié 1 , Jeroen Janse 1 , Eric W. Wieland 1 , Koen P. L. Kuijpers 1 , Volker Hessel 1 , Michael G. Debije 2 , Timothy Noël 1
Affiliation  

The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer–Lambert–Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels.

中文翻译:

通过编号放大基于发光太阳能聚光器的光微反应器

利用太阳能推动化学反应是化学界的长期梦想。最近,可见光介导的光氧化还原催化被认为是将太阳能转化为化学键的理想催化转化。然而,由于布格-兰伯特-比尔定律,缩放光化学转变一直是极具挑战性的。最近,我们率先开发了具有出色能源效率的发光太阳能聚光器光微反应器(LSC-PMs)。这些设备收集太阳能,将宽广的太阳能光谱转换为窄波长区域,然后将重新发射的光子波导到反应通道。本文中,我们通过编号策略报告了此类LSC-PM的可扩展性。我们工作中最重要的是使用通过3D打印制造的模具。这使我们能够快速生产出许多不同的原型,并以省时的方式在实验上优化关键设计方面。已制造出多达32个平行通道的反应器,使用分叉式流量分配器可显示出色的流量分布(标准偏差低于10%)。这种出色的流量分布对于有效地扩大模型反应至关重要,显示出与单通道设备所获得的产率相当的产率。我们还发现,通道间距是LSC-PM编号的重要且独特的设计参数,它极大地影响了反应通道中经历的光子通量。这使我们能够快速生产出许多不同的原型,并以省时的方式在实验上优化关键设计方面。已制造出多达32个平行通道的反应器,使用分叉式流量分配器可显示出色的流量分布(标准偏差低于10%)。这种出色的流量分布对于有效地扩大模型反应至关重要,显示出与单通道设备所获得的产率相当的产率。我们还发现,通道间距是LSC-PM编号的重要且独特的设计参数,它极大地影响了反应通道中经历的光子通量。这使我们能够快速生产出许多不同的原型,并以省时的方式在实验上优化关键设计方面。已制造出多达32个平行通道的反应器,使用分叉式流量分配器可显示出色的流量分布(标准偏差低于10%)。这种出色的流量分布对于有效地扩大模型反应至关重要,显示出与单通道设备所获得的产率相当的产率。我们还发现,通道间距是LSC-PM编号的重要且独特的设计参数,它极大地影响了反应通道中经历的光子通量。已制造出多达32个平行通道的反应器,使用分叉式流量分配器可显示出色的流量分布(标准偏差低于10%)。这种出色的流量分布对于有效地扩大模型反应至关重要,显示出与单通道设备所获得的产率相当的产率。我们还发现,通道间距是LSC-PM编号的重要且独特的设计参数,它极大地影响了反应通道中经历的光子通量。已制造出多达32个平行通道的反应器,使用分叉式流量分配器可显示出色的流量分布(标准偏差低于10%)。这种出色的流量分布对于有效地扩大模型反应至关重要,显示出与单通道设备所获得的产率相当的产率。我们还发现,通道间距是LSC-PM编号的重要且独特的设计参数,它极大地影响了反应通道中经历的光子通量。
更新日期:2017-11-21
down
wechat
bug