当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries
Nano Energy ( IF 17.6 ) Pub Date : 2017-11-20 , DOI: 10.1016/j.nanoen.2017.11.040
Bo Wang , Ying Xie , Tong Liu , Hao Luo , Bin Wang , Chunhui Wang , Lei Wang , Dianlong Wang , Shixue Dou , Yu Zhou

Due to the relatively slow, diffusion-controlled faradaic reaction mechanisms of conventional LiFePO4 (LFP) materials, which is hard to deliver satisfied capacity for high rate applications. In this work, ultrafine LFP quantum dots (LFP-QDs) co-modified by two types of carbonaceous materials - amorphous carbon and graphitized conductive carbon (graphene) have been successfully synthesized through a novel microreactor strategy. Because of the very limited area constructed by the dual-carbon microreactor for the growth of LFP crystal, it's demension was furthest suppressed to a very small level (~ 6.5 nm). Such a designed nano-composite possesses a large specific surface area for charge adsorption and abundant active sites for faradaic reactions, as well as ideal kinetic features for both electron and ion transport, and thus exhibits ultra-fast, surface-reaction-controlled lithium storage behavior, mimicking the pseudocapacitive mechanisms for supercapacitor materials, in terms of extraordinary rate capability (78 mAh g−1 at 200 C) and remarkable cycling stability (~ 99% over 1000 cycles at 20 C). On the other side, due to the quasi-2D structure of the synthesized LFP-QDs composite, which can be used as the basic unit to further fabricate free-standing film, aerogel and fiber electrode without the addition of binder and conductive agent for different practical applications. In addition, to deeper understand its electrochemical behavior, a combined experimental and density functional theoretical (DFT) calculation study is also introduced.



中文翻译:

通过常规微反应器策略合成的LiFePO 4量子点复合材料用于超高倍率锂离子电池

由于常规LiFePO 4的扩散控制相对缓慢的法拉第反应机理(LFP)材料,很难为高速率应用提供令人满意的容量。在这项工作中,已经通过一种新型的微反应器策略成功地合成了由两种类型的碳质材料共改性的超细LFP量子点(LFP-QDs),即无定形碳和石墨化导电碳(石墨烯)。由于双碳微反应器为LFP晶体的生长而构造的区域非常有限,因此它的尺寸被最大程度地抑制到很小的水平(约6.5 nm)。这种设计的纳米复合材料具有较大的电荷吸附比表面积和丰富的法拉第反应活性位,以及电子和离子传输的理想动力学特征,因此具有超快的表面反应控制型锂存储能力行为,在200 C时为-1)和出色的循环稳定性(在20 C下1000次循环中〜99%)。另一方面,由于合成的LFP-QDs复合材料的准2D结构,可以用作基本单元来进一步制造自支撑膜,气凝胶和纤维电极,而无需添加粘合剂和导电剂。实际应用。此外,为了更深入地了解其电化学行为,还引入了组合的实验和密度泛函理论(DFT)计算研究。

更新日期:2017-11-20
down
wechat
bug