当前位置: X-MOL 学术Sens. Actuators B Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature
Sensors and Actuators B: Chemical ( IF 8.4 ) Pub Date : 2017-11-16 , DOI: 10.1016/j.snb.2017.11.066
Ali Mirzaei , Jae-Hun Kim , Hyoun Woo Kim , Sang Sub Kim

High-performance gas sensors are needed to improve safety in daily life. Even though the gas sensing performance of new nanostructured metal oxides has improved significantly, some aspects of these novel nanomaterials have not been fully explored. Core-shell (C-S) and hollow shell nanostructures are two types of advanced materials for gas sensing applications. Their popularity is mainly due to the synergetic effects of the core and shell in C-S nanostructures, the high surface areas of both C-S and hollow nanostructures, and the possibility of tuning the shell thickness within the range of the Debye length for such nanostructures. In addition to the type of sensing material, morphology, sensing temperature, and porosity, shell thickness is one of the most important design parameters. Unfortunately, less attention has been paid to the effect of shell thickness on the gas sensing properties. Herein, we demonstrate that the thickness has an undeniable role in the gas sensing response of the resulting material. In this review, we present the first overview of this aspect of sensing materials. By referring to related works, we show how shell thickness can affect the sensing properties of both C-S and hollow nanostructures. Researchers in this field will be able to fabricate more sensitive gas sensors for real applications by better understanding the effect of shell thickness on the gas sensing properties of C-S and hollow nanostructured materials.



中文翻译:

壳厚度如何影响纳米结构材料的气敏特性:文献综述

需要高性能的气体传感器来提高日常生活中的安全性。即使新型纳米结构金属氧化物的气体传感性能已得到显着改善,但这些新型纳米材料的某些方面仍未得到充分探索。核壳(CS)和中空壳纳米结构是用于气体传感应用的两种先进材料。它们的流行主要是由于CS纳米结构中核和壳的协同作用,CS和中空纳米结构的高表面积以及在此类纳米结构的Debye长度范围内调节壳厚度的可能性。除了传感材料的类型,形态,传感温度和孔隙率之外,壳体厚度也是最重要的设计参数之一。很遗憾,壳厚度对气体感测性能的影响关注较少。在此,我们证明了厚度在所得材料的气体传感响应中具有不可否认的作用。在这篇评论中,我们提出了传感材料这一方面的第一篇综述。通过参考相关工作,我们展示了壳厚度如何影响CS和中空纳米结构的传感特性。通过更好地了解壳厚度对CS和中空纳米结构材料的气敏特性的影响,该领域的研究人员将能够制造出更适合实际应用的灵敏气体传感器。我们将介绍传感材料这一方面的第一篇概述。通过参考相关工作,我们展示了壳厚度如何影响CS和中空纳米结构的传感特性。通过更好地了解壳厚度对CS和中空纳米结构材料的气敏特性的影响,该领域的研究人员将能够制造出更适合实际应用的灵敏气体传感器。我们将介绍传感材料这一方面的第一篇概述。通过参考相关工作,我们展示了壳厚度如何影响CS和中空纳米结构的传感特性。通过更好地了解壳厚度对CS和中空纳米结构材料的气敏特性的影响,该领域的研究人员将能够制造出更适合实际应用的灵敏气体传感器。

更新日期:2017-11-16
down
wechat
bug