当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of Parameters for the Generation of Hydrogen in Combined Slow Pyrolysis and Steam Gasification of Biomass
Energy & Fuels ( IF 5.3 ) Pub Date : 2017-12-07 00:00:00 , DOI: 10.1021/acs.energyfuels.7b02429
Prakash Parthasarathy 1 , K. Sheeba Narayanan 1 , Selim Ceylan 2 , Nugroho Agung Pambudi 3
Affiliation  

The generation of hydrogen in steam gasification can be improved by combining slow pyrolysis and steam gasification. The study investigates the effect of controlling parameters of slow pyrolysis–steam gasification on the generation of hydrogen. In the work, some native biomass wastes were first slow pyrolyzed, and then the generated chars were steam gasified to generate hydrogen. In slow pyrolysis, factors such as temperature, solid residence time, and particle size were optimized. In steam gasification, variables such as gasification temperature, residence time, steam-to-biomass ratio, catalysts, composition of catalysts, sorbents, composition of sorbents, and effective catalyst–sorbent composition were optimized. Through slow pyrolysis, it was ensured that only high-quality char was available to steam gasification. It was found that the highest gasification temperature yielded the maximum amount of hydrogen. It was noticed that an optimal residence time and steam-to-biomass ratio was essential to generate the maximum amount of hydrogen. Among the selected catalysts, KCl generated the maximum amount of hydrogen. Of the selected sorbents, CaO offered the maximum amount of hydrogen. The combination of catalyst–sorbent (KCl–CaO) yielded the maximum amount of hydrogen. It was also observed that an optimal quantity of catalyst, sorbent, and catalyst–sorbent was needed to generate the maximum amount of hydrogen.

中文翻译:

生物质慢速热解和气化联合制氢参数的优化

通过将慢速热解和蒸汽气化相结合,可以改善蒸汽气化中氢气的产生。该研究调查了慢速热解-蒸汽气化的控制参数对氢气产生的影响。在这项工作中,首先将一些天然生物质废物缓慢热解,然后将生成的焦炭进行蒸汽气化以产生氢气。在慢速热解中,对温度,固体停留时间和粒径等因素进行了优化。在蒸汽气化中,对变量进行了优化,例如气化温度,停留时间,蒸汽/生物质比,催化剂,催化剂的组成,吸附剂,吸附剂的组成以及有效的催化剂-吸附剂的组成。通过缓慢的热解,确保了仅高质量的焦炭可用于蒸汽气化。发现最高的气化温度产生最大量的氢。注意到最佳的停留时间和蒸汽生物量比对于产生最大量的氢是必不可少的。在选定的催化剂中,氯化钾产生最大量的氢气。在选定的吸附剂中,CaO可提供最大量的氢。催化剂-吸附剂(KCl-CaO)的组合产生了最大量的氢气。还观察到,为了产生最大量的氢气,需要最适量的催化剂,吸附剂和催化剂-吸附剂。氯化钾产生最大量的氢气。在选定的吸附剂中,CaO可提供最大量的氢。催化剂-吸附剂(KCl-CaO)的组合产生了最大量的氢气。还观察到,为了产生最大量的氢气,需要最适量的催化剂,吸附剂和催化剂-吸附剂。氯化钾产生最大量的氢气。在选定的吸附剂中,CaO可提供最大量的氢。催化剂-吸附剂(KCl-CaO)的组合产生了最大量的氢气。还观察到,为了产生最大量的氢气,需要最适量的催化剂,吸附剂和催化剂-吸附剂。
更新日期:2017-12-07
down
wechat
bug