当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interaction Dependent Heating and Atom Loss in a Periodically Driven Optical Lattice
Physical Review Letters ( IF 8.6 ) Pub Date : 2017-11-16 00:00:00 , DOI: 10.1103/physrevlett.119.200402
Martin Reitter , Jakob Näger , Karen Wintersperger , Christoph Sträter , Immanuel Bloch , André Eckardt , Ulrich Schneider

Periodic driving of optical lattices has enabled the creation of novel band structures not realizable in static lattice systems, such as topological bands for neutral particles. However, especially driven systems of interacting bosonic particles often suffer from strong heating. We have systematically studied heating in an interacting Bose-Einstein condensate in a driven one-dimensional optical lattice. We find interaction dependent heating rates that depend on both the scattering length and the driving strength and identify the underlying resonant intra- and interband scattering processes. By comparing the experimental data and theory, we find that, for driving frequencies well above the trap depth, the heating rate is dramatically reduced by the fact that resonantly scattered atoms leave the trap before dissipating their energy into the system. This mechanism of Floquet evaporative cooling offers a powerful strategy to minimize heating in Floquet engineered quantum gases.

中文翻译:

周期性驱动的光学晶格中相互作用相关的加热和原子损失

光学晶格的周期性驱动使得能够创建在静态晶格系统中无法实现的新型能带结构,例如中性粒子的拓扑带。但是,特别是与相互作用的玻色子粒子驱动的系统通常会遭受强烈的加热。我们已经系统地研究了在驱动的一维光学晶格中相互作用的玻色-爱因斯坦凝聚物中的加热。我们发现了依赖于相互作用的加热速率,该速率取决于散射长度和驱动强度,并确定了潜在的共振带内和带间散射过程。通过比较实验数据和理论,我们发现,对于远高于陷阱深度的驱动频率,由于共振散射的原子在将其能量耗散到系统中之前会离开陷阱,因此显着降低了加热速率。
更新日期:2017-11-16
down
wechat
bug