当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructure as high-performance supercapacitor electrode
Carbon ( IF 10.9 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.carbon.2017.11.037
Qiangqiang Zhang , Yu Wang , Baoqiang Zhang , Keren Zhao , Pingge He , Boyun Huang

A three-dimensional graphene-based nanostructure with graphene aerogel templating graphene nanosheets (GA-GNs) has been fabricated via a modified hydrothermal method, followed by a microwave plasma chemical vapor deposition process. The mechanical properties of such hybrid nanostructures, for the first time, were quantitatively measured to demonstrate their superior mechanical robustness with stress and Young's modulus up to 96 kPa and 181.25 kPa, respectively. Finite-element modeling further reveals the mechanical strengthening mechanism with GNs as stiffening ribs layered over thin cellular walls within the GA. Moreover, GA-GNs present excellent electrical conductivity as high as similar to 1000 S/m, showing great promise as high-performance supercapacitor electrodes. The as-prepared free-standing and binder-free GA-GN electrode exhibits a high specific capacitance of 245 F g(-1) (based on the entire electrode mass) which corresponds to a high areal capacitance of 1.1 F cm(-2), desirable rate capability and outstanding cyclic stability with a capacitance retention of 92% over 10000 cycles. To assess their practical functionality, a two-terminal symmetric all-solid-state supercapacitor based on such all-carbon electrodes was fabricated. Such supercapacitor devices exhibited desirable areal capacitance, low internal resistance and outstanding cyclic stability. (C) 2017 Elsevier Ltd. All rights reserved.

中文翻译:

3D 超弹性石墨烯气凝胶-纳米片混合分层纳米结构作为高性能超级电容器电极

已经通过改进的水热法和微波等离子体化学气相沉积工艺制造了具有石墨烯气凝胶模板石墨烯纳米片(GA-GNs)的三维石墨烯纳米结构。首次对这种混合纳米结构的机械性能进行了定量测量,以证明它们在应力和杨氏模量分别高达 96 kPa 和 181.25 kPa 的情况下具有优异的机械强度。有限元建模进一步揭示了机械强化机制,其中 GN 作为加强筋,分层在 GA 内的薄蜂窝壁上。此外,GA-GNs 具有高达 1000 S/m 的优异导电性,显示出作为高性能超级电容器电极的巨大潜力。所制备的独立且无粘合剂的 GA-GN 电极具有 245 F g(-1) 的高比电容(基于整个电极质量),对应于 1.1 F cm(-2 )、理想的倍率性能和出色的循环稳定性,10000 次循环后电容保持率为 92%。为了评估它们的实际功能,制造了一种基于这种全碳电极的两端对称全固态超级电容器。这种超级电容器装置表现出理想的面积电容、低内阻和出色的循环稳定性。(C) 2017 Elsevier Ltd。保留所有权利。理想的倍率性能和出色的循环稳定性,10000 次循环后电容保持率为 92%。为了评估它们的实际功能,制造了一种基于这种全碳电极的两端对称全固态超级电容器。这种超级电容器装置表现出理想的面积电容、低内阻和出色的循环稳定性。(C) 2017 Elsevier Ltd。保留所有权利。理想的倍率性能和出色的循环稳定性,10000 次循环后电容保持率为 92%。为了评估它们的实际功能,制造了一种基于这种全碳电极的两端对称全固态超级电容器。这种超级电容器装置表现出理想的面积电容、低内阻和出色的循环稳定性。(C) 2017 Elsevier Ltd。保留所有权利。
更新日期:2018-02-01
down
wechat
bug