当前位置: X-MOL 学术Adv. Opt. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear photonics with high-Q whispering-gallery-mode resonators
Advances in Optics and Photonics ( IF 27.1 ) Pub Date : 2017-11-15 , DOI: 10.1364/aop.9.000828
Guoping Lin , Aurélien Coillet , Yanne K. Chembo

High- and ultrahigh-Q whispering-gallery mode resonators have the capability to trap photons by total internal reflection for a duration ranging from nanoseconds to milliseconds. These exceptionally long photon lifetimes enhance the light–matter interactions at all scales, namely at the electronic, molecular, and lattice levels. As a consequence, nonlinear photon scattering can be triggered with very low threshold powers, down to a few microwatts. The possibility to efficiently harness photon–photon interactions with a system optimizing size, weight, power, and cost constraints has created a new, quickly thriving research area in photonics science and technology. This topic is inherently cross-disciplinary, as it stands at the intersection of nonlinear and quantum optics, crystallography, optoelectronics, and microwave photonics. From a fundamental perspective, high-Q whispering-gallery mode resonators have emerged as an ideal platform to investigate light–matter interactions in nonlinear bulk materials. From an applied viewpoint, technological applications include time-metrology, aerospace engineering, coherent optical fiber communications, or nonclassical light generation, among others. The aim of this paper is to provide an overview of the most recent advances in this area, which is increasingly gaining importance in contemporary photonics.

中文翻译:

具有高 Q 回音壁模式谐振器的非线性光子学

高 Q 和超高 Q 回音壁模式谐振器能够通过全内反射在纳秒到毫秒的持续时间内捕获光子。这些异常长的光子寿命增强了所有尺度的光-物质相互作用,即电子、分子和晶格水平。因此,非线性光子散射可以以非常低的阈值功率触发,低至几微瓦。通过优化尺寸、重量、功率和成本限制的系统有效地利用光子-光子相互作用的可能性已经在光子科学和技术中创造了一个新的、快速发展的研究领域。这个主题本质上是跨学科的,因为它处于非线性和量子光学、晶体学、光电子学和微波光子学的交叉点。从基本的角度来看,高 Q 回音壁模式谐振器已成为研究非线性体材料中光-物质相互作用的理想平台。从应用的角度来看,技术应用包括时间计量、航空航天工程、相干光纤通信或非经典光生成等。本文的目的是概述该领域的最新进展,该领域在当代光子学中越来越重要。其中。本文的目的是概述该领域的最新进展,该领域在当代光子学中越来越重要。其中。本文的目的是概述该领域的最新进展,该领域在当代光子学中越来越重要。
更新日期:2017-11-15
down
wechat
bug