当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems
Applied Energy ( IF 11.2 ) Pub Date : 2017-11-09 , DOI: 10.1016/j.apenergy.2017.11.036
Christian Finck , Rongling Li , Rick Kramer , Wim Zeiler

In the future due to continued integration of renewable energy sources, demand-side flexibility would be required for managing power grids. Building energy systems will serve as one possible source of energy flexibility. The degree of flexibility provided by building energy systems is highly restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance indicators that sufficiently characterize flexibility in terms of size (energy), time (power) and costs. To fully describe power flexibility, the paper introduces the instantaneous power flexibility as power flexibility indicator. The instantaneous power flexibility shows the potential power flexibility of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control.



中文翻译:

定量控制建筑采暖系统中的热能和热能存储的需求灵活性

将来,由于可再生能源的持续整合,管理电网需要有需求方的灵活性。建筑能源系统将成为能源灵活性的一种可能来源。建筑物能量系统提供的灵活性程度受到功率到热的转换(例如建筑物的热泵和热能存储可能性)的严格限制。为了量化建筑需求的灵活性,必须利用热能存储来捕获建筑能源系统的动态响应。为了确定建筑物的能源系统可以提供的最大灵活性,需要进行最佳控制。在本文中,最佳控制用于详细确定配备有热泵,电加热器和热能储存罐的办公大楼的需求灵活性。需求灵活性是使用不同的性能指标来量化的,这些指标充分体现了灵活性的大小(能源),时间(功率)和成本。为了全面描述电源灵活性,本文介绍了瞬时电源灵活性作为电源灵活性指标。瞬时功率灵活性显示了在充电,放电或空闲模式下任何情况下TES和热能功率的潜在功率灵活性。进行的模拟案例研究表明,可以设计与建筑物供暖系统集成的水箱,相变材料箱和热化学材料箱,以提供最佳控制的灵活性。本文介绍了瞬时功率柔韧性作为功率柔韧性指标。瞬时功率灵活性显示了在充电,放电或空闲模式下任何情况下TES和热能功率的潜在功率灵活性。进行的模拟案例研究表明,可以设计与建筑物供暖系统集成的水箱,相变材料箱和热化学材料箱,以提供最佳控制的灵活性。本文介绍了瞬时功率柔韧性作为功率柔韧性指标。瞬时功率灵活性显示了在充电,放电或空闲模式下任何情况下TES和热能功率的潜在功率灵活性。进行的模拟案例研究表明,可以设计与建筑物供暖系统集成的水箱,相变材料箱和热化学材料箱,以提供最佳控制的灵活性。

更新日期:2017-11-09
down
wechat
bug