当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Framework to Predict Failure and Performance of Bone-Inspired Materials
ACS Biomaterials Science & Engineering ( IF 5.8 ) Pub Date : 2017-11-08 00:00:00 , DOI: 10.1021/acsbiomaterials.7b00606
Flavia Libonati 1, 2 , Vito Cipriano 1 , Laura Vergani 1 , Markus J. Buehler 2
Affiliation  

Bone and its substructures have recently been a source of inspiration for the design of novel composites, offering optimal strength-toughness and stiffness-density combinations, traits endowed by the abundance of complex biointerfaces. Bone-inspired design combined with engineering principles may offer a path toward reaching an optimal strength-toughness balance in new materials. On the one hand, with the advent of micro- and nanoreinforcements and novel manufacturing techniques, new possibilities for advanced materials have opened. On the other hand, the endeavor for novel materials with radically improved properties is spurring the research toward accurate and versatile numerical models to be used in the design phase. In this work, we present a 2D lattice spring model to predict the performance of previously tested 3D-printed bone-inspired composites, and their failure modes. The model has the capacity to correctly estimate the material performance and to reproduce the bonelike toughening mechanisms, occurring at different length scales in our composites. The numerical results show how the material properties, the interfaces, the reinforcement geometry, and the topological pattern affect the stress distribution and the propagation of defects, significantly decreasing the flaw sensitivity of the material. Our framework could be used for the design of new materials with improved fracture resistance and balance with stiffness and strength.

中文翻译:

预测骨骼启发材料的失效和性能的计算框架

骨及其子结构最近成为新颖复合材料设计的灵感来源,提供了最佳的强度-韧性和刚度-密度组合,这些特征是由于复杂的生物界面丰富而赋予的。骨设计与工程原理相结合,可以为在新材料中达到最佳强度-韧性平衡提供一条途径。一方面,随着微米级和纳米级增强材料的出现以及新颖的制造技术的出现,为先进材料开辟了新的可能性。另一方面,对具有显着改善的性能的新型材料的努力正在促使人们朝着在设计阶段使用精确而通用的数值模型的方向发展。在这项工作中,我们提供了一个2D晶格弹簧模型,以预测先前测试的3D打印的骨启发性复合材料的性能及其失效模式。该模型能够正确估计材料性能,并再现在我们的复合材料中以不同的长度比例出现的类骨增韧机制。数值结果表明材料特性,界面,增强几何形状和拓扑模式如何影响应力分布和缺陷的传播,从而显着降低材料的缺陷敏感性。我们的框架可用于设计具有改进的抗断裂性以及刚度和强度之间平衡的新材料。该模型能够正确估计材料性能,并再现在我们的复合材料中以不同的长度比例出现的类骨增韧机制。数值结果表明材料特性,界面,增强几何形状和拓扑模式如何影响应力分布和缺陷的传播,从而显着降低材料的缺陷敏感性。我们的框架可用于设计具有改善的抗断裂性以及刚度和强度之间平衡的新材料。该模型能够正确估计材料性能,并再现在我们的复合材料中以不同的长度比例出现的类骨增韧机制。数值结果表明材料特性,界面,增强几何形状和拓扑模式如何影响应力分布和缺陷的传播,从而显着降低材料的缺陷敏感性。我们的框架可用于设计具有改进的抗断裂性以及刚度和强度之间平衡的新材料。大大降低了材料的缺陷敏感性。我们的框架可用于设计具有改善的抗断裂性以及刚度和强度之间平衡的新材料。大大降低了材料的缺陷敏感性。我们的框架可用于设计具有改进的抗断裂性以及刚度和强度之间平衡的新材料。
更新日期:2017-11-09
down
wechat
bug