当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning chain interaction entropy in complex coacervation using polymer stiffness, architecture, and salt valency
Molecular Systems Design & Engineering ( IF 3.6 ) Pub Date : 2017-11-06 00:00:00 , DOI: 10.1039/c7me00108h
Tyler K. Lytle 1, 2, 3, 4 , Charles E. Sing 2, 3, 4, 5
Affiliation  

Oppositely-charged polyelectrolytes can undergo a liquid–liquid phase separation in a salt solution, resulting in a polymer-dense ‘coacervate’ phase that has found use in a wide range of applications from food science to self-assembled materials. Coacervates can be tuned for specific applications by varying parameters such as salt concentration and valency, polyelectrolyte length, and polyelectrolyte identity. Recent simulation and theory has begun to clarify the role of molecular structure on coacervation phase behavior, especially for common synthetic polyelectrolytes that exhibit high charge densities. In this manuscript, we use a combination of transfer matrix theory and Monte Carlo simulation to understand at a physical level how a range of molecular features, in particular polymer architecture and stiffness, and salt valency can be used to design the phase diagrams of these materials. We demonstrate a physical picture of how the underlying entropy-driven process of complex coacervation is affected by this wide range of physical attributes.

中文翻译:

使用聚合物刚度,结构和盐价调整复杂凝聚中的链相互作用熵

带有相反电荷的聚电解质可以在盐溶液中进行液-液相分离,从而形成一种聚合物致密的“凝聚层”相,已被广泛用于从食品科学到自组装材料的各种应用中。凝聚层可以通过改变诸如盐浓度和化合价,聚电解质长度和聚电解质特性之类的参数进行调整。最近的模拟和理论已经开始阐明分子结构对凝聚相行为的作用,特别是对于显示高电荷密度的普通合成聚电解质而言。在本手稿中,我们结合使用了传递矩阵理论和蒙特卡洛模拟技术,从物理层面理解了一系列分子特征,特别是聚合物的结构和刚度,盐价可用于设计这些材料的相图。我们展示了一个物理图景,说明了复杂凝聚的基本熵驱动过程是如何受这一广泛的物理属性影响的。
更新日期:2017-11-09
down
wechat
bug