当前位置: X-MOL 学术Integr. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced directional cell migration induced by vaccinia virus on a microfluidic-based multi-shear cell migration assay platform
Integrative Biology ( IF 2.5 ) Pub Date : 2017-11-07 , DOI: 10.1039/c7ib00151g
Cheng Wang 1, 2, 3 , Na Xu 1, 2, 3 , Yu-Jun Yang 1, 2, 3 , Qiu-Mei Wu 1, 2, 3 , Dai-Wen Pang 1, 2, 3 , Zhi-Ling Zhang 1, 2, 3
Affiliation  

Virus-induced cell migration plays important roles in the direct and rapid spread of virus particles. As cell migration is also regulated by shear stress, it is necessary to explore the cell migration behavior influenced by multiple factors including a virus and shear stress. In this report, a three-layer microfluidic chip with symmetric channels was designed and fabricated to investigate vaccinia virus-induced cell migration in different shear stress environments. Regular “exclusion zones” without cell damage were formed by microvalves. The results showed that infected cells were more elongated and tended to migrate along the flow direction compared to the random cell migration under static conditions. Meanwhile, shear stress enhanced the natural directional persistence and accelerated the velocity of infected cell migration. Moreover, reduced peripheral lamellae and the axial lamella being confined to the flow direction were responsible for the increased directionality of cell migration under shear stress. Interestingly, in the presence of shear stress, the Golgi complex reoriented and relocated behind the nucleus and aligned to the flow direction in infected migratory cells accompanied by the rearrangement of the cytoskeleton. Our report reveals the cell migration behavior in the multi-environment of virus infection and shear stress based on the microfluidic cell migration assay platform. It helps us to deeply understand the interactions between the virus, host cells, and surrounding microenvironment.

中文翻译:

牛痘病毒在基于微流体的多剪切细胞迁移分析平台上诱导的定向细胞迁移增强

病毒诱导的细胞迁移在病毒颗粒的直接和快速传播中起着重要作用。由于细胞迁移也受切应力调节,因此有必要研究受多种因素(包括病毒和切应力)影响的细胞迁移行为。在本报告中,设计并制造了具有对称通道的三层微流控芯片,以研究牛痘病毒诱导的细胞在不同切应力环境下​​的迁移。微型阀形成了没有细胞损伤的规则“排斥区”。结果表明,与静态条件下的随机细胞迁移相比,被感染的细胞更加细长,并且倾向于沿流向迁移。同时,剪切应力增强了自然方向的持久性,并加快了被感染细胞迁移的速度。而且,减少的外围薄片和轴向薄片被限制在流动方向是造成细胞在剪切应力下迁移的方向性增加的原因。有趣的是,在存在剪切应力的情况下,高尔基复合体重新定向并重新定位在细胞核后面,并与受感染的迁徙细胞中的流向对齐,并伴随着细胞骨架的重排。我们的报告揭示了基于微流体细胞迁移测定平台的病毒感染和剪切应力的多环境中的细胞迁移行为。它有助于我们深入了解病毒,宿主细胞和周围微环境之间的相互作用。在存在剪切应力的情况下,高尔基复合体重新定位并重新定位在细胞核后,并与受感染的迁徙细胞中的流向对齐,并伴随着细胞骨架的重排。我们的报告揭示了基于微流体细胞迁移测定平台的病毒感染和剪切应力的多环境中的细胞迁移行为。它有助于我们深入了解病毒,宿主细胞和周围微环境之间的相互作用。在存在剪切应力的情况下,高尔基复合体重新定位并重新定位在细胞核后,并与受感染的迁徙细胞中的流向对齐,并伴随着细胞骨架的重排。我们的报告揭示了基于微流体细胞迁移测定平台的病毒感染和剪切应力的多环境中的细胞迁移行为。它有助于我们深入了解病毒,宿主细胞和周围微环境之间的相互作用。我们的报告揭示了基于微流体细胞迁移测定平台的病毒感染和剪切应力的多环境中的细胞迁移行为。它有助于我们深入了解病毒,宿主细胞和周围微环境之间的相互作用。我们的报告揭示了基于微流体细胞迁移测定平台的病毒感染和剪切应力的多环境中的细胞迁移行为。它有助于我们深入了解病毒,宿主细胞和周围微环境之间的相互作用。
更新日期:2017-11-07
down
wechat
bug