当前位置: X-MOL 学术J. Chromatogr. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop
Journal of Chromatography A ( IF 4.1 ) Pub Date : 2017-10-28 , DOI: 10.1016/j.chroma.2017.10.067
Chung-gi Lee , Jae-Hwan Choi , Chanhun Park , Nien-Hwa Linda Wang , Sungyong Mun

The feasibility of a simulated moving bed (SMB) technology for the continuous separation of high-purity xylobiose (X2) from the output of a β-xylosidase X1→X2 reaction has recently been confirmed. To ensure high economical efficiency of the X2 production method based on the use of xylose (X1) as a starting material, it is essential to accomplish the comprehensive optimization of the X2-separation SMB process in such a way that its X2 productivity can be maximized while maintaining the X2 product concentration from the SMB as high as possible in consideration of a subsequent lyophilization step. To address this issue, a suitable SMB optimization tool for the aforementioned task was prepared based on standing wave design theory. The prepared tool was then used to optimize the SMB operation parameters, column configuration, total column number, adsorbent particle size, and X2 yield while meeting the constraints on X2 purity, X2 product concentration, and pressure drop. The results showed that the use of a larger particle size caused the productivity to be limited by the constraint on X2 product concentration, and a maximum productivity was attained by choosing the particle size such that the effect of the X2-concentration limiting factor could be balanced with that of pressure-drop limiting factor. If the target level of X2 product concentration was elevated, higher productivity could be achieved by decreasing particle size, raising the level of X2 yield, and increasing the column number in the zones containing the front and rear of X2 solute band.



中文翻译:

在产物浓度和压降的约束下,用于分离木糖和木糖的模拟移动床色谱的驻波设计和优化

最近已经证实了使用模拟移动床(SMB)技术从β-木糖苷酶X1→X2反应的输出中连续分离高纯度木糖(X2)的可行性。为了确保以木糖(X1)为原料的X2生产方法的高经济效益,必须以使X2分离效率最大化的方式完成X2分离SMB工艺的全面优化。考虑到随后的冻干步骤,同时将来自SMB的X2产物浓度保持在尽可能高的水平。为了解决这个问题,基于驻波设计理论,准备了适合上述任务的SMB优化工具。然后使用准备好的工具来优化SMB操作参数,色谱柱配置,总色谱柱数,吸附剂粒度和X2收率,同时满足X2纯度,X2产物浓度和压降的限制。结果表明,使用较大的颗粒尺寸会导致生产率受到X2产物浓度的限制,并且通过选择颗粒尺寸可以最大程度地提高生产率,从而可以平衡X2浓度限制因子的影响。与压降限制因素有关。如果提高X2产物浓度的目标水平,则可以通过减小粒径,提高X2产率水平以及增加包含X2溶质带前后区域的柱数来实现更高的生产率。结果表明,使用较大的颗粒尺寸会导致生产率受到X2产物浓度的限制,并且通过选择颗粒尺寸可以最大程度地提高生产率,从而可以平衡X2浓度限制因子的影响。与压降限制因素有关。如果提高X2产物浓度的目标水平,则可以通过减小粒径,提高X2产率水平以及增加包含X2溶质带前后区域的柱数来实现更高的生产率。结果表明,使用较大的颗粒尺寸会导致生产率受到X2产物浓度的限制,并且通过选择颗粒尺寸可以最大程度地提高生产率,从而可以平衡X2浓度限制因子的影响。与压降限制因素有关。如果提高X2产物浓度的目标水平,则可以通过减小粒径,提高X2产率水平以及增加包含X2溶质带前后区域的柱数来实现更高的生产率。并且通过选择粒径以使X 2浓度限制因子的作用与压降限制因子的作用平衡来获得最大的生产率。如果提高X2产物浓度的目标水平,则可以通过减小粒径,提高X2产率水平以及增加包含X2溶质带前后区域的柱数来实现更高的生产率。并且通过选择粒径以使X 2浓度限制因子的作用与压降限制因子的作用平衡来获得最大的生产率。如果提高X2产物浓度的目标水平,则可以通过减小粒径,提高X2产率水平以及增加包含X2溶质带前后区域的柱数来实现更高的生产率。

更新日期:2017-10-28
down
wechat
bug