当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward a New Generation of Smart Biomimetic Actuators for Architecture
Advanced Materials ( IF 29.4 ) Pub Date : 2017-10-24 , DOI: 10.1002/adma.201703653
Simon Poppinga 1, 2 , Cordt Zollfrank 3 , Oswald Prucker 4, 5 , Jürgen Rühe 4, 5 , Achim Menges 6 , Tiffany Cheng 6 , Thomas Speck 1, 2, 4
Affiliation  

Motile plant structures (e.g., leaves, petals, cone scales, and capsules) are functionally highly robust and resilient concept generators for the development of biomimetic actuators for architecture. Here, a concise review of the state‐of‐the‐art of plant movement principles and derived biomimetic devices is provided. Achieving complex and higher‐dimensional shape changes and passive‐hydraulic actuation at a considerable time scale, as well as mechanical robustness of the motile technical structures, is challenging. For example, almost all currently available bioinspired hydraulic actuators show similar limitations due to the poroelastic time scale. Therefore, a major challenge is increasing the system size to the meter range, with actuation times of minutes or below. This means that response speed and flow rate need significant improvement for the systems, and the long‐term performance degradation issue of hygroscopic materials needs to be addressed. A theoretical concept for “escaping” the poroelastic regime is proposed, and the possibilities for enhancing the mechanical properties of passive‐hydraulic bilayer actuators are discussed. Furthermore, the promising aspects for further studies to implement tropistic movement behavior are presented, i.e., movement that depends on the direction of the triggering stimulus, which can finally lead to “smart building skins” that autonomously and self‐sufficiently react to changing environmental stimuli in a direction‐dependent manner.

中文翻译:

面向建筑的新一代智能仿生执行器

活动性植物结构(例如,叶子,花瓣,圆锥形鳞片和胶囊)是功能强大且具有弹性的概念生成器,用于开发建筑仿生执行器。此处简要概述了植物运动原理和衍生的仿生设备。在相当长的时间范围内实现复杂的高维形状变化和被动液压致动,以及机动技术结构的机械坚固性,都是具有挑战性的。例如,由于多孔弹性的时间尺度,几乎所有当前可用的生物启发液压致动器都显示出类似的局限性。因此,主要的挑战是将系统尺寸增加到仪表范围,并且启动时间为几分钟或更短。这意味着响应速度和流速需要对系统进行重大改进,并且吸湿性材料的长期性能下降问题必须得到解决。提出了一种“逃逸”多孔弹性状态的理论概念,并讨论了增强被动液压双层执行器机械性能的可能性。此外,还介绍了实现惯性运动行为的进一步研究的有希望的方面,即,运动取决于触发刺激的方向,最终可以导致“智能建筑外观”,能够对变化的环境刺激进行自主和自给自足的反应。以方向相关的方式。提出了一种“逃逸”多孔弹性状态的理论概念,并讨论了增强被动液压双层执行器机械性能的可能性。此外,还介绍了实现惯性运动行为的进一步研究的有希望的方面,即,运动取决于触发刺激的方向,最终可以导致“智能建筑外观”,能够对变化的环境刺激进行自主和自给自足的反应。以方向相关的方式。提出了一种“逃逸”多孔弹性状态的理论概念,并讨论了增强被动液压双层执行器机械性能的可能性。此外,还介绍了实现惯性运动行为的进一步研究的有希望的方面,即,运动取决于触发刺激的方向,最终可以导致“智能建筑外观”,能够对变化的环境刺激进行自主和自给自足的反应。以方向相关的方式。
更新日期:2017-10-24
down
wechat
bug