当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large‐Scale, Long‐Range‐Ordered Patterning of Nanocrystals via Capillary‐Bridge Manipulation
Advanced Materials ( IF 29.4 ) Pub Date : 2017-10-23 , DOI: 10.1002/adma.201703143
Jiangang Feng 1, 2 , Qian Song 2, 3 , Bo Zhang 4 , Yuchen Wu 1 , Tie Wang 3 , Lei Jiang 1, 2, 4
Affiliation  

Deterministic assembly of nanoparticles with programmable patterns is a core opportunity for property‐by‐design fabrication and large‐scale integration of functional materials and devices. The wet‐chemical‐synthesized colloidal nanocrystals are compatible with solution assembly techniques, thus possessing advantages of high efficiency, low cost, and large scale. However, conventional solution process suffers from tradeoffs between spatial precision and long‐range order of nanocrystal assembly arising from the uncontrollable dewetting dynamics and fluid flow. Here, a capillary‐bridge manipulation method is demonstrated for directing the dewetting of nanocrystal inks and deterministically patterning long‐range‐ordered superlattice structures. This is achieved by employing micropillars with programmable size, arrangement, and shape, which permits deterministic manipulation of geometry, position, and dewetting dynamics of capillary bridges. Various superlattice structures, including one‐dimensional (1D), circle, square, pentagon, hexagon, pentagram, cross arrays, are fabricated. Compared to the glassy thin films, long‐range‐ordered superlattice arrays exhibit improved ferroelectric polarization. Coassembly of nanocrystal superlattice and organic functional molecule is further demonstrated. Through introducing azobenzene into superlattice arrays, a switchable ferroelectric polarization is realized, which is triggered by order–disorder transition of nanocrystal stacking in reversible isomerization process of azobenzene. This method offers a platform for patterning nanocrystal superlattices and fabricating microdevices with functionalities for multiferroics, electronics, and photonics.

中文翻译:

通过毛细管桥操纵对纳米晶体进行大规模,长距离有序构图

具有可编程图案的纳米颗粒的确定性组装是按设计进行制造和功能材料与器件大规模集成的核心机会。湿法化学合成的胶体纳米晶体与溶液组装技术兼容,因此具有高效,低成本和大规模的优点。然而,传统的解决方法由于无法控制的去湿动力学和流体流动而在空间精度和纳米晶体组件的长程有序之间做出权衡。在这里,展示了一种毛细管桥操纵方法,用于指导纳米晶体油墨的去湿和确定性地图案化长程超晶格结构。这是通过使用具有可编程大小,排列和形状的微柱来实现的,这允许确定性地操纵毛细管桥的几何形状,位置和去湿动力学。制造了各种超晶格结构,包括一维(1D),圆形,正方形,五边形,六边形,五角星形,交叉阵列。与玻璃状薄膜相比,长距离超晶格阵列表现出改善的铁电极化。进一步证明了纳米晶超晶格与有机功能分子的共组装。通过将偶氮苯引入超晶格阵列中,实现了可切换的铁电极化,这是由偶氮苯的可逆异构化过程中纳米晶堆叠的有序-无序转变触发的。此方法提供了一个平台,用于对纳米晶超晶格进行构图并制造具有多铁性,电子学,
更新日期:2017-10-23
down
wechat
bug