当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Band-gap engineering of porous BiVO4 nanoshuttles by Fe and Mo co-doping for efficient photocatalytic water oxidation†
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2017-10-20 00:00:00 , DOI: 10.1039/c7qi00588a
Ren Liu 1, 2, 3, 4 , Jiabin Ren 1, 2, 3, 4 , Dian Zhao 1, 2, 3, 4 , Jiqiang Ning 4, 5, 6, 7, 8 , Ziyang Zhang 4, 5, 6, 7, 8 , Yongjiang Wang 4, 5, 6, 7, 8 , Yijun Zhong 1, 2, 3, 4, 9 , Changcheng Zheng 4, 8, 10, 11, 12 , Yong Hu 1, 2, 3, 4, 9
Affiliation  

Co-doping of metal ions in semiconductor photocatalysts is a promising strategy to promote photocatalytic activity due to its expected synergistic effects. In this study, we demonstrated the first synthesis of uniform Fe and Mo co-doped BiVO4 (Fe/Mo-BVO) porous nanoshuttles (PNSs) through a simple solvothermal method combined with a subsequent impregnation thermal treatment. It has been discovered that the incorporation of Fe and Mo into the BVO lattice not only influences the shuttle-like morphology and porous structure but also modifies the band structure of the pristine BVO; this consequently boosts the photocatalytic performance of BVO. The as-prepared Fe/Mo-BVO PNSs exhibit significantly enhanced photoactivity for water oxidation under visible-light irradiation, and an average O2 evolution rate of up to 191.5 μmol h−1 g−1 is obtained, which is nearly 1.5 and 17 times higher than the rates obtained for Mo-doped BVO and pristine BVO, respectively. Density functional theory (DFT) calculations were also employed to further investigate the electronic structure of the co-doped products.

中文翻译:

Fe和Mo共掺杂 的多孔BiVO 4纳米穿梭的带隙工程用于有效的光催化水氧化

由于其预期的协同作用,半导体光催化剂中金属离子的共掺杂是提高光催化活性的一种有前途的策略。在这项研究中,我们展示了通过简单的溶剂热方法结合随后的浸渍热处理,首次合成均匀的Fe和Mo共掺杂的BiVO 4(Fe / Mo-BVO)多孔纳米梭(PNSs)。已经发现,Fe和Mo掺入BVO晶格中不仅影响穿梭样形态和多孔结构,而且还改变了原始BVO的能带结构。因此,这增强了BVO的光催化性能。制备的Fe / Mo-BVO PNS在可见光照射下对水氧化具有显着增强的光活性,并且平均O 2可获得高达191.5μmolh -1 g -1的析出速率,分别比掺Mo的BVO和原始的BVO的速率高出近1.5倍和17倍。还使用密度泛函理论(DFT)计算来进一步研究共掺杂产品的电子结构。
更新日期:2017-10-20
down
wechat
bug