当前位置: X-MOL 学术Green Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier
Green Chemistry ( IF 9.8 ) Pub Date : 2017-10-13 00:00:00 , DOI: 10.1039/c7gc02774e
Zihao Zhang 1, 2, 3, 4, 5 , Qiwei Yang 1, 2, 3, 4, 5 , Hao Chen 1, 2, 3, 4, 5 , Kequan Chen 5, 6, 7, 8, 9 , Xiuyang Lu 1, 2, 3, 4, 5 , Pingkai Ouyang 1, 2, 3, 4, 5 , Jie Fu 1, 2, 3, 4, 5 , Jingguang G. Chen 10, 11, 12, 13, 14
Affiliation  

In this work, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. The formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.

中文翻译:

Cu-Ni合金催化剂上,以甲醇为氢载体,将油酸原位加氢和脱羧为庚烷

在这项工作中,合成了负载型Cu-Ni双金属催化剂并对其原位进行了评估。使用甲醇作为氢供体对油酸进行氢化和脱羧。与单金属Cu和Ni基催化剂相比,负载型Cu-Ni合金在生产庚烷中的活性和选择性上均表现出显着的提高。高角度环形暗场扫描透射电子显微镜(HADDF-STEM),能量色散X射线光谱(EDS映射),X射线衍射(XRD)和程序升温显示了Cu-Ni合金的形成减少量(TPR)。通过CO吸附和X射线光电子能谱(XPS)之后的漫反射红外傅里叶变换光谱(DRIFTS)揭示了Cu-Ni合金中部分氧化的Cu。乙烯和丙烷的程序升温脱附(乙烯/丙烷-TPD)表明,与Ni相比,Cu-Ni合金的形成抑制了CC键的开裂,并显着提高了对庚烷的选择性。乙酸的程序升温脱附(乙酸-TPD)表明,双金属Cu-Ni合金和Ni催化剂对乙酸的吸附比对Cu催化剂的吸附强。Cu-Ni合金和部分氧化的Cu的形成促进了脱羧反应并抑制了CC键的裂解反应,从而提高了催化活性和选择性。乙酸的程序升温脱附(乙酸-TPD)表明,双金属Cu-Ni合金和Ni催化剂对乙酸的吸附比对Cu催化剂的吸附强。Cu-Ni合金和部分氧化的Cu的形成促进了脱羧反应并抑制了CC键的裂解反应,从而提高了催化活性和选择性。乙酸的程序升温脱附(乙酸-TPD)表明,双金属Cu-Ni合金和Ni催化剂对乙酸的吸附比对Cu催化剂的吸附强。Cu-Ni合金和部分氧化的Cu的形成促进了脱羧反应并抑制了CC键的裂解反应,从而提高了催化活性和选择性。
更新日期:2018-01-02
down
wechat
bug