当前位置: X-MOL 学术Nat. Protoc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile synthesis of gold nanomaterials with unusual crystal structures.
Nature Protocols ( IF 14.8 ) Pub Date : 2017-Nov-01 , DOI: 10.1038/nprot.2017.097
Zhanxi Fan , Xiao Huang , Ye Chen , Wei Huang , Hua Zhang

Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

中文翻译:

轻松合成具有异常晶体结构的金纳米材料。

金(Au)纳米材料由于其高化学稳定性,有希望的催化性能,优异的生物相容性,独特的电子结构和出色的局部表面等离子体激元共振(LSPR)吸收性能而受到了广泛的研究关注;所有这些都与它们的大小和形状密切相关。近来,晶体相控制的贵金属纳米材料的合成已经成为调节其理化性质的有前途的策略。该协议描述了在温和条件下具有不寻常晶体结构的金纳米材料的晶体相控制合成的详细实验程序。简而言之,使用HAuCl 4的石墨烯氧化物辅助方法合成了厚度约为2.4 nm的纯六角密堆积(hcp)Au方形片材(AuSSs)。在己烷和乙醇的混合物中被油胺还原。通过使用纯己烷作为溶剂,可以在氧化石墨烯上获得直径约1.6 nm的分散良好的超薄hcp /面心立方(fcc)Au纳米线。同时,通过在hcp AuSS上二次生长Au,制备了边长为200-400 nm的hcp / fcc Au方形板。值得注意的是,可以通过其中HAuCl 4为一锅的胶体方法合成厚度为2.0-6.0 nm的六角形(4H)Au纳米带。在己烷和1,2-二氯丙烷的混合溶剂中,油烯胺将其还原。这些具有异常晶体结构的金纳米材料的合成需要17-37小时。透射电子显微镜(TEM)和原子力显微镜(AFM)用于表征所得的金纳米材料,它们可能具有许多有希望的应用,例如生物传感,近红外光热疗法,催化和表面增强拉曼散射(SERS)。
更新日期:2017-10-12
down
wechat
bug