当前位置: X-MOL 学术NPG Asia Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel biomaterial strategies for controlled growth factor delivery for biomedical applications
NPG Asia Materials ( IF 9.7 ) Pub Date : 2017-10-06 , DOI: 10.1038/am.2017.171
Zhenming Wang , Zhefeng Wang , William Weijia Lu , Wanxin Zhen , Dazhi Yang , Songlin Peng

Growth factors (GFs) are soluble proteins secreted by cells that have the ability to regulate a variety of cellular processes and tissue regeneration. However, their translation into clinical applications is limited due to their short effective half-life, low stability, and rapid inactivation by enzymes under physiological conditions. To maximize the effectiveness of GFs and their biologically relevant applicability, a wide variety of sophisticated bio-inspired systems have been developed that augment tissue repair and cellular regeneration by controlling how much, when, and where GFs are released. Recently, protein immobilization techniques combined with nanomaterial carriers have shown promise in mimicking the natural healing cascade during tissue regeneration by augmenting the delivery and effectiveness of GFs. This review evaluates the latest techniques in direct immobilization and relevant biomaterials used for GF loading and release, including synthetic polymers, albumin, polysaccharides, lipids, mesoporous silica-based nanoparticles (NPs), and polymeric capsules. Specifically, we focus on GF-encapsulated NPs in functionalized microporous scaffolds as a promising alternative with the ability to mimic extracellular matrix (ECM) hierarchical architectures and components with high cell affinity and bioactivity. Finally, we discuss how these next-generation, advanced delivery systems have been used to enhance tissue repair and regeneration and consider future implications for their use in the field of regenerative medicine.



中文翻译:

用于生物医学应用的可控生长因子递送的新型生物材料策略

生长因子(GFs)是细胞分泌的可溶性蛋白,具有调节多种细胞过程和组织再生的能力。然而,由于其短的有效半衰期,低的稳定性以及在生理条件下被酶快速灭活,它们在临床上的应用受到了限制。为了最大程度地发挥GFs的功效及其生物学相关的适用性,已开发出各种复杂的,受生物启发的系统,这些系统通过控制GFs的释放量,释放时间和释放位置来增强组织修复和细胞再生。最近,结合纳米材料载体的蛋白质固定技术已显示出有望通过增加GFs的传递和有效性来模仿组织再生过程中自然愈合级联的希望。这篇综述评估了直接固定的最新技术以及用于GF装载和释放的相关生物材料,包括合成聚合物,白蛋白,多糖,脂质,介孔二氧化硅基纳米颗粒(NPs)和聚合物胶囊。具体来说,我们专注于功能化的微孔支架中的GF封装的NPs,因为它具有模仿细胞外基质(ECM)层次结构和具有高细胞亲和力和生物活性的成分的能力。最后,我们讨论如何使用这些下一代先进的递送系统来增强组织修复和再生,并考虑其在再生医学领域中的应用前景。多糖,脂质,介孔二氧化硅基纳米颗粒(NPs)和聚合物胶囊。具体来说,我们专注于功能化的微孔支架中的GF封装的NPs,因为它具有模仿细胞外基质(ECM)层次结构和具有高细胞亲和力和生物活性的成分的能力。最后,我们讨论如何使用这些下一代先进的递送系统来增强组织修复和再生,并考虑其在再生医学领域中的应用前景。多糖,脂质,介孔二氧化硅基纳米颗粒(NPs)和聚合物胶囊。具体而言,我们专注于功能化的微孔支架中的GF封装的NPs,因为它具有模仿细胞外基质(ECM)分层结构和具有高细胞亲和力和生物活性的成分的能力。最后,我们讨论如何使用这些下一代先进的递送系统来增强组织修复和再生,并考虑其在再生医学领域中的应用前景。我们专注于功能化的微孔支架中的GF封装的NPs,因为它具有模仿细胞外基质(ECM)层次结构和具有高细胞亲和力和生物活性的成分的能力,是一种有前途的选择。最后,我们讨论如何使用这些下一代先进的递送系统来增强组织修复和再生,并考虑其在再生医学领域中的应用前景。我们专注于功能化的微孔支架中的GF封装的NPs,因为它具有模仿细胞外基质(ECM)层次结构和具有高细胞亲和力和生物活性的成分的能力,是一种有前途的选择。最后,我们讨论如何使用这些下一代先进的递送系统来增强组织修复和再生,并考虑其在再生医学领域中的应用前景。

更新日期:2018-06-03
down
wechat
bug