当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable Hydrogels for Cell Encapsulation and Neo‐Tissue Growth to Enable Personalized Tissue Engineering
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2017-10-04 , DOI: 10.1002/adhm.201700605
Stephanie J. Bryant 1 , Franck J. Vernerey 2
Affiliation  

Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic‐based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo‐tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo‐tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic‐based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo‐tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient‐specific hydrogel designs for personalized tissue engineering is discussed.

中文翻译:

用于细胞封装和新组织生长的可编程水凝胶,可实现个性化组织工程

仿生和可生物降解的合成水凝胶正在成为细胞封装和组织工程的有前途的平台。值得注意的是,基于合成的水凝胶可通过控制多个可调参数(例如,初始网络结构,降解动力学和行为以及聚合物特性)来提供高度可编程的宏观特性(例如,机械,溶胀和运输特性)和降解曲线。成功的要素之一是在水凝胶过渡到新组织时保持结构完整性的能力。由于供体之间的细胞活动高度可变,这一无缝过渡变得复杂。因此,计算模型具有探索水凝胶降解和新组织在多个长度尺度上生长的耦合过程的独特能力,因此是组织工程中的重要工具。此外,此类模型为开发预测性计算工具提供了新的机会,以克服为不同供体设计水凝胶时遇到的挑战。在本报告中,对合成水凝胶的可编程性质及其与水凝胶结构性质的关系及其随着降解的演变进行了综述。接下来是计算模型开发的最新进展,该模型描述了当细胞被封装在水凝胶中时随着新组织的生长而发生的水凝胶降解。最后,
更新日期:2017-10-04
down
wechat
bug