当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium as energy carrier: CFD simulations of LI combustion in a 100 MW slag tap furnace
Applied Energy ( IF 11.2 ) Pub Date : 2017-09-19 , DOI: 10.1016/j.apenergy.2017.09.041
Pascal Maas , Martin Schiemann , Viktor Scherer , Peter Fischer , Dan Taroata , Günther Schmid

Metal combustion is currently under discussion as a possible basis for a closed energy loop. One potential metal with several benefits for such a process is lithium. While the reaction products in conventional combustion processes are gaseous, the reaction products of lithium combustion are solid (Li2CO3, Li2O) and, hence, easy to capture and to recycle. The current paper describes the lay-out and optimization of a 100 MWth lithium slag tap furnace by computational fluid dynamics (CFD) using CO2 as oxidizer for the lithium. ANSYS Fluent has been extended by two lithium combustion models developed by the authors. The first reference model is one-step model directly converting Li to Li2CO3, neglecting the intermediate species Li2O. The second extended model is a two-step model considering Li2O as intermediate species. Simulations were carried out using a fixed geometry of the slag tab, varying the injection angle of gas and lithium spray and the CO2-Li ratio with respect to the lithium conversion level and lithium product capture efficiency. The simulations show that a high capture efficiency of lithium combustion products is possible when a large injection angle is used. The conversion level is highly dependent on injection angle, CO2-Li ratio and the Li combustion model used. While the conversion level of the reference model is inherently limited and lies between 84 and 87.6%, the extended model predicts significantly higher conversion levels in the order of 96.7–99.2% which would be needed for industrial application.



中文翻译:

锂作为能量载体:100 MW炉渣出炉的LI燃烧的CFD模拟

目前正在讨论金属燃烧作为闭合能量回路的可能基础。锂对于这种方法具有多种好处,是一种潜在的金属。尽管常规燃烧过程中的反应产物是气态的,但是锂燃烧的反应产物是固态的(Li 2 CO 3,Li 2 O),因此易于捕获和再循环。目前的论文通过使用CO 2作为锂的氧化剂的计算流体力学(CFD)描述了100 MW th锂渣自来水炉的布局和优化。作者开发的两个锂燃烧模型扩展了ANSYS Fluent。第一个参考模型是直接将Li转换为Li 2的单步模型。忽略中间物种Li 2 O的CO 3。第二个扩展模型是将Li 2 O作为中间物种的两步模型。使用渣粒的固定几何形状,相对于锂转化水平和锂产物捕获效率,改变气体和锂喷雾的喷射角以及CO 2 -Li比来进行模拟。仿真表明,当使用大喷射角时,锂燃烧产物的高捕获效率是可能的。转换水平高度取决于喷射角CO 2-Li比率和所使用的Li燃烧模型。虽然参考模型的转换水平固有地受到限制,并且介于84%和87.6%之间,但扩展模型预测工业应用将需要更高的转换水平,约为96.7%至99.2%。

更新日期:2017-09-19
down
wechat
bug