当前位置: X-MOL 学术Pharmacol. Therapeut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological responses to immobilized microscale and nanoscale surface topographies
Pharmacology & Therapeutics ( IF 13.5 ) Pub Date : 2017-07-16 , DOI: 10.1016/j.pharmthera.2017.07.009
Shelby A. Skoog , Girish Kumar , Roger J. Narayan , Peter L. Goering

Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications.



中文翻译:

对固定的微米级和纳米级表面形貌的生物学响应

细胞反应受到与细胞外基质(ECM)的生化和生物力学相互作用的极大影响。由于ECM体系结构对细胞反应的影响,大量研究致力于开发模仿生理环境的生物材料,以设计改进的医疗设备和组织工程支架。具有微尺度和纳米尺度特征的表面形貌已显示出对许多细胞反应的影响,包括细胞粘附,迁移,增殖,基因表达,蛋白质产生和分化。然而,由于细胞类型和生物材料表面特性的差异,很难建立生物学响应和表面形貌之间的关系。所以,重要的是优化植入物的表面特征特性,以引起特定应用所需的生物学反应。这项工作的目的是回顾研究微观结构和纳米结构生物材料对人体影响的研究。通过制造微米级和纳米级表面形貌,材料表面性质的物理化学表征,蛋白质吸附动力学研究以及特定生物医学应用中的细胞反应评估来进行体外生物反应。

更新日期:2017-07-16
down
wechat
bug