当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fractal Electrochemical Microsupercapacitors
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2017-08-17 , DOI: 10.1002/aelm.201700185
Mrinal K. Hota 1 , Qiu Jiang 1 , Yousof Mashraei 1, 2 , Khaled N. Salama 1, 2 , Husam N. Alshareef 1
Affiliation  

The first successful fabrication of microsupercapacitors (μ‐SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO2 thin‐film electrodes as prototypes, μ‐SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ‐SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin‐film RuO2 electrodes. The energy density of the Moore design is 23.2 mWh cm−3 at a volumetric power density of 769 mW cm−3. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm−3 at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ‐SCs that use thin‐film electrodes at no extra processing or fabrication cost.

中文翻译:

分形电化学微型超级电容器

据报道,使用分形电极设计首次成功制造了微型超级电容器(μSC)。使用溅射无水RuO 2薄膜电极作为原型,使用希尔伯特,皮亚诺和摩尔分形设计制造μSC,并将其性能与传统的叉指式电极结构进行比较。微型超级电容器的性能(包括能量密度,面积和体积电容)随分形电极的几何形状而变化。特别是,在相同的功率密度和使用相同的薄膜RuO 2电极进行比较时,与传统的叉指结构相比,基于摩尔设计的μSC的能量密度提高了32%。摩尔设计的能量密度为23.2 mWh cm -3在769 mW cm -3的体积功率密度下。相反,在相同的功率密度下,叉指设计显示的能量密度仅为17.5 mWh cm -3。我们表明,有源电极的表面积不能单独解释电容和能量密度的增加。我们提出,由于分形电极中的边缘效应,电力线的增加也有助于更高的电容。这项研究表明,电极分形设计是一种提高使用薄膜电极的集成μSC的性能的可行策略,而无需额外的处理或制造成本。
更新日期:2017-08-17
down
wechat
bug