当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of computational modeling and experimental techniques to design fuel surrogates
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.jngse.2017.07.025
H.A. Choudhury , S. Intikhab , S. Kalakul , R. Gani , N.O. Elbashir

Abstract Conventional gasoline comprises of a large number of hydrocarbons that makes it difficult to utilize in a model for prediction of its properties. Modeling is needed for a better understanding of the fuel flow and combustion behavior that are essential to enhance fuel quality and improve engine performance. A simplified alternative is to develop surrogate fuels that have fewer compounds and emulate certain important desired physical properties of the target fuels. Six gasoline blends were formulated through a computer aided model based technique “Mixed Integer Non-Linear Programming” (MINLP). Different target properties of the surrogate blends for example, Reid vapor pressure ( RVP ), dynamic viscosity ( η ), density ( ρ ), Research octane number ( RON ) and liquid-liquid miscibility of the surrogate blends) were calculated. In this study, more rigorous property models in a computer aided tool called Virtual Process-Product Design Laboratory (VPPD-Lab) are applied onto the defined compositions of the surrogate gasoline. The aim is to primarily verify the defined composition of gasoline by means of VPPD-Lab. ρ, η and RVP are calculated with more accuracy and constraints such as distillation curve and flash point on the blend design are also considered. A post-design experiment-based verification step is proposed to further improve and fine-tune the “best” selected gasoline blends following the computation work. Here, advanced experimental techniques are used to measure the RVP , ρ, η, RON and distillation temperatures. The experimental results are compared with the model predictions as well as the extended calculations in VPPD-Lab.

中文翻译:

集成计算建模和实验技术以设计燃料替代品

摘要 传统汽油包含大量碳氢化合物,因此难以在模型中用于预测其特性。需要建模以更好地了解燃料流动和燃烧行为,这对于提高燃料质量和改善发动机性能至关重要。一种简化的替代方法是开发具有较少化合物并模拟目标燃料某些重要的所需物理特性的替代燃料。通过基于计算机辅助模型的技术“混合整数非线性规划”(MINLP)配制了六种汽油混合物。计算了替代混合物的不同目标特性,例如,里德蒸气压 (RVP)、动态粘度 (η)、密度 (ρ)、研究辛烷值 (RON) 和替代混合物的液-液混溶性)。在这项研究中,在称为虚拟过程产品设计实验室 (VPPD-Lab) 的计算机辅助工具中,更严格的属性模型被应用于替代汽油的定义成分。目的是主要通过 VPPD-Lab 验证定义的汽油成分。ρ、η 和 RVP 的计算精度更高,并且还考虑了混合物设计中的蒸馏曲线和闪点等约束条件。提出了基于设计后实验的验证步骤,以根据计算工作进一步改进和微调“最佳”选择的汽油混合物。在这里,先进的实验技术用于测量 RVP、ρ、η、RON 和蒸馏温度。将实验结果与模型预测以及 VPPD-Lab 中的扩展计算进行比较。
更新日期:2018-07-01
down
wechat
bug