当前位置: X-MOL 学术J. Photochem. Photobiol. C Photochem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial photosynthesis: Where are we now? Where can we go?
Journal of Photochemistry and Photobiology C: Photochemistry Reviews ( IF 13.6 ) Pub Date : 2015-08-24 , DOI: 10.1016/j.jphotochemrev.2015.08.002
Ralph L. House , Neyde Yukie Murakami Iha , Rodolfo L. Coppo , Leila Alibabaei , Benjamin D. Sherman , Peng Kang , M. Kyle Brennaman , Paul G. Hoertz , Thomas J. Meyer

Widespread implementation of renewable energy technologies, while preventing significant increases in greenhouse gas emissions, appears to be the only viable solution to meeting the world's energy demands for a sustainable energy future. The final energy mix will include conservation and energy efficiency, wind, geothermal, biomass, and others, but none more ubiquitous or abundant than the sun. Over several decades of development, the cost of photovoltaic cells has decreased significantly with lifetimes that exceed 25 years and there is promise for widespread implementation in the future. However, the solar input is intermittent and, to be practical at a truly large scale, will require an equally large capability for energy storage. One approach involves artificial photosynthesis and the use of the sun to drive solar fuel reactions for water splitting into hydrogen and oxygen or to reduce CO2 to reduced carbon fuels. An early breakthrough in this area came from an initial report by Honda and Fujishima on photoelectrochemical water splitting at TiO2 with UV excitation. Significant progress has been made since in exploiting semiconductor devices in water splitting with impressive gains in spectral coverage and solar efficiencies. An alternate, hybrid approach, which integrates molecular light absorption and catalysis with the band gap properties of oxide semiconductors, the dye-sensitized photoelectrosynthesis cell (DSPEC), has been pioneered by the University of North Carolina Energy Frontier Research Center (UNC EFRC) on Solar Fuels. By utilizing chromophore-catalyst assemblies, core/shell oxide structures, and surface stabilization, the EFRC recently demonstrated a viable DSPEC for solar water splitting.



中文翻译:

人工光合作用:我们现在在哪里?我们可以去哪里?

可再生能源技术的广泛实施,在防止温室气体排放量显着增加的同时,似乎是满足世界对可持续能源未来的能源需求的唯一可行解决方案。最终的能源结构将包括保护和能源效率,风能,地热能,生物质能等,但没有比太阳普适或丰富的能源了。在几十年的发展中,光伏电池的成本已大大降低,使用寿命超过25年,并且有望在未来得到广泛应用。然而,太阳能输入是间歇性的,并且要真正地大规模应用,将需要同样大的能量存储能力。2减少碳燃料。本领域的早期突破来自本田和藤岛的关于TiO 2的光电化学水分解的初步报告。用紫外线激发。自从在水分解中开发半导体器件以来,已经取得了重大进展,光谱覆盖范围和太阳能效率得到了显着提高。北卡罗来纳大学能源前沿研究中心(UNC EFRC)率先提出了另一种混合方法,该方法将分子光吸收和催化与氧化物半导体的带隙特性集成在一起,即染料敏化光电子合成电池(DSPEC)。太阳能。通过利用发色团-催化剂组件,核/壳氧化物结构和表面稳定性,EFRC最近展示了一种可行的DSPEC用于太阳能水分解。

更新日期:2015-08-24
down
wechat
bug