当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review
Progress in Energy and Combustion Science ( IF 29.5 ) Pub Date : 2017-09-01 , DOI: 10.1016/j.pecs.2017.05.004
Shurong Wang , Gongxin Dai , Haiping Yang , Zhongyang Luo

Abstract The past decades have seen increasing interest in developing pyrolysis pathways to produce biofuels and bio-based chemicals from lignocellulosic biomass. Pyrolysis is a key stage in other thermochemical conversion processes, such as combustion and gasification. Understanding the reaction mechanisms of biomass pyrolysis will facilitate the process optimization and reactor design of commercial-scale biorefineries. However, the multiscale complexity of the biomass structures and reactions involved in pyrolysis make it challenging to elucidate the mechanism. This article provides a broad review of the state-of-art biomass pyrolysis research. Considering the complexity of the biomass structure, the pyrolysis characteristics of its three major individual components (cellulose, hemicellulose and lignin) are discussed in detail. Recently developed experimental technologies, such as Py-GC–MS/FID, TG-MS/TG-FTIR, in situ spectroscopy, 2D-PCIS, isotopic labeling method, in situ EPR and PIMS have been employed for biomass pyrolysis research, including online monitoring of the evolution of key intermediate products and the qualitative and quantitative measurement of the pyrolysis products. Based on experimental results, many macroscopic kinetic modeling methods with comprehensive mechanism schemes, such as the distributed activation energy model (DAEM), isoconversional method, detailed lumped kinetic model, kinetic Monte Carlo model, have been developed to simulate the mass loss behavior during biomass pyrolysis and to predict the resulting product distribution. Combined with molecular simulations of the elemental reaction routes, an in-depth understanding of the biomass pyrolysis mechanism may be obtained. Aiming to further improve the quality of pyrolysis products, the effects of various catalytic methods and feedstock pretreatment technologies on the pyrolysis behavior are also reviewed. At last, a brief conclusion for the challenge and perspectives of biomass pyrolysis is provided.

中文翻译:

木质纤维素生物质热解机制:最新评论

摘要 在过去的几十年里,人们对开发热解途径以从木质纤维素生物质中生产生物燃料和生物基化学品的兴趣日益浓厚。热解是其他热化学转化过程(如燃烧和气化)的关键阶段。了解生物质热解的反应机理将有助于商业规模生物炼油厂的工艺优化和反应器设计。然而,热解所涉及的生物质结构和反应的多尺度复杂性使得阐明其机制具有挑战性。本文对最先进的生物质热解研究进行了广泛的回顾。考虑到生物质结构的复杂性,详细讨论了其三个主要单独组分(纤维素、半纤维素和木质素)的热解特性。最近开发的实验技术,如 Py-GC-MS/FID、TG-MS/TG-FTIR、原位光谱、2D-PCIS、同位素标记法、原位 EPR 和 PIMS 已被用于生物质热解研究,包括在线监测关键中间产品的演变以及热解产品的定性和定量测量。基于实验结果,已经开发了许多具有综合机制方案的宏观动力学建模方法,例如分布式活化能模型(DAEM)、等转化方法、详细集总动力学模型、动力学蒙特卡罗模型,以模拟生物质过程中的质量损失行为。热解并预测产生的产物分布。结合元素反应路线的分子模拟,可以获得对生物质热解机理的深入了解。为了进一步提高热解产物的质量,还综述了各种催化方法和原料预处理技术对热解行为的影响。最后,对生物质热解面临的挑战和前景进行了简要总结。
更新日期:2017-09-01
down
wechat
bug