当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The combustion mitigation of methane as a non-CO2 greenhouse gas
Progress in Energy and Combustion Science ( IF 29.5 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.pecs.2016.06.002
X. Jiang , D. Mira , D.L. Cluff

Anthropogenic emissions of non-CO2 greenhouse gases such as fugitive methane contribute significantly to global warming. A review of fugitive methane combustion mitigation and utilisation technologies, which are primarily aimed at methane emissions from coal mining activities, with a focus on modelling and simulation of ultra-lean methane oxidation/combustion is presented. The challenges associated with ultra-lean methane oxidation are on the ignition of the ultra-lean mixture and sustainability of the combustion process. There is a lack of fundamental studies on chemical kinetics of ultra-lean methane combustion and reliable kinetic schemes that can be used together with computational fluid dynamics studies to design and develop advanced mitigation systems. Mitigation of methane as a greenhouse gas calls for more efforts on understanding ultra-lean combustion. Recuperative combustion provides a promising means for mitigating ultra-lean methane emissions. Progress is needed on effective methods to ignite and to recuperate and retain heat for oxidation/combustion of the ultra-lean mixtures. Catalysts can be very effective in reducing the temperatures required for oxidation while plasmas may be utilised to assist the ignition, but thermodynamic/aerodynamic limits of burning ultra-lean methane remain unexplored. Further technological developments may be focussed on developing innovative capturing technology as well as technological innovations to achieve effective ignition and sustainable oxidation/combustion.

中文翻译:

甲烷作为非 CO2 温室气体的燃烧减缓

非二氧化碳温室气体的人为排放,如易挥发的甲烷,对全球变暖有重大影响。回顾了逸散性甲烷燃烧缓解和利用技术,这些技术主要针对煤炭开采活动中的甲烷排放,重点是超稀薄甲烷氧化/燃烧的建模和模拟。与超贫甲烷氧化相关的挑战在于超贫混合物的点火和燃烧过程的可持续性。缺乏关于超稀薄甲烷燃烧的化学动力学和可靠的动力学方案的基础研究,这些方案可以与计算流体动力学研究一起使用来设计和开发先进的缓解系统。减少作为温室气体的甲烷需要更多的努力来了解超稀薄燃烧。回热式燃烧为减少超贫甲烷排放提供了一种很有前景的方法。需要在有效方法上取得进展,以点燃和恢复和保持超贫混合物氧化/燃烧所需的热量。催化剂可以非常有效地降低氧化所需的温度,而等离子体可用于辅助点火,但燃烧超贫甲烷的热力学/空气动力学极限仍未得到探索。进一步的技术发展可能侧重于开发创新的捕集技术以及实现有效点火和可持续氧化/燃烧的技术创新。回热式燃烧为减少超贫甲烷排放提供了一种很有前景的方法。需要在有效方法上取得进展,以点燃和恢复和保持超贫混合物氧化/燃烧所需的热量。催化剂可以非常有效地降低氧化所需的温度,而等离子体可用于辅助点火,但燃烧超贫甲烷的热力学/空气动力学极限仍未得到探索。进一步的技术发展可能侧重于开发创新的捕集技术以及实现有效点火和可持续氧化/燃烧的技术创新。回热式燃烧为减少超贫甲烷排放提供了一种很有前景的方法。需要在有效方法上取得进展,以点燃和恢复和保持超贫混合物氧化/燃烧所需的热量。催化剂可以非常有效地降低氧化所需的温度,而等离子体可用于辅助点火,但燃烧超贫甲烷的热力学/空气动力学极限仍未得到探索。进一步的技术发展可能侧重于开发创新的捕集技术以及实现有效点火和可持续氧化/燃烧的技术创新。催化剂可以非常有效地降低氧化所需的温度,而等离子体可用于辅助点火,但燃烧超贫甲烷的热力学/空气动力学极限仍未得到探索。进一步的技术发展可能侧重于开发创新的捕集技术以及实现有效点火和可持续氧化/燃烧的技术创新。催化剂可以非常有效地降低氧化所需的温度,而等离子体可用于辅助点火,但燃烧超贫甲烷的热力学/空气动力学极限仍未得到探索。进一步的技术发展可能侧重于开发创新的捕集技术以及实现有效点火和可持续氧化/燃烧的技术创新。
更新日期:2018-05-01
down
wechat
bug