当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility
Applied Energy ( IF 11.2 ) Pub Date : 2017-08-08 , DOI: 10.1016/j.apenergy.2017.07.133
Yuping Li , Cong Zhao , Lungang Chen , Xinghua Zhang , Qi Zhang , Tiejun Wang , Songbai Qiu , Jin Tan , Kai Li , Chenguang Wang , Longlong Ma

Process design and techno-economic analysis of a pilot bio-jet fuel production facility were investigated using Aspen plus software and net present value method (NPV). This process include two-step hydrothermal decomposition of corncob to furfural (steam stripping of hemicellulose) and Levulinic acid (LA, acidic hydrolysis of cellulose), oxygenated precursor production via aldol condensation reaction of furfural and LA, and the subsequent hydro-processing for oxygen removal. Lab experiments on the major area of the process were carried out. The yields of furfural, LA, oxygenated precursor and bio-jet fuel-range hydrocarbons (C8–C15) were 59.5% (based on hemicellulose), 34.4% (based on cellulose), 75% (based on furfural and LA input) and 51 wt% (based on precursor) respectively. These values were used as the input information for the process simulation of a first-of-a-kind pilot facility for 1.3 ML/a bio-jet fuel production using this pioneering technology.

The mass and energy analysis from Aspen plus model shows that the bio-jet fuel yield was 0.125 tonne/tonne dried corncob. 31.0% of carbon atoms and 47.6% of potential energy from carbohydrate compounds of corncob leave as bio-jet fuel. The estimated consumption of water, steam and electricity is relatively high of 12.3 kg, 63.7 kg and 1.22 KW h respectively due to small simulation scale and lack of process optimization. The total capital cost was ca. $3.96 MM for the 1.3 ML/a facility, of which 28% of equipment investment is spent for oxygenated precursor production. The total operation expense (OPEX) is $1.18/L bio-jet fuel, including variable and fixed costs. Expenses on corncob, catalytic catalyst and H2 contribute 23%, 19% and 16% respectively. Single point sensitivity analysis of the major breakdown of OPEX shows that catalyst lifetime is the priority factor. Economy of scale of minimum selling price of bio-jet fuel (MSPB) for different capacity facilities (1.3 ML/a, 6.5 ML/a and 13 ML/a) was investigated using different discount and tax rates, of which the lowest MSPB was $0.74/L with a subsidy of $0.31/L at 10% discount rate.



中文翻译:

通过水热分解和催化加氢从玉米芯生产生物喷气燃料:中试规模设施的工艺和技术经济性的实验室分析

使用Aspen plus软件和净现值法(NPV)研究了生物喷气燃料生产试验设施的工艺设计和技术经济分析。该过程包括玉米芯两步水热分解为糠醛(半纤维素的汽提)和左旋丙酸(LA,纤维素的酸性水解),通过糠醛和LA的醛醇缩合反应生成氧化的前体,随后进行加氢制氧移动。在该过程的主要领域进行了实验室实验。糠醛,洛杉矶,氧化前体和生物喷气燃料范围碳氢化合物的产量(C 8 –C 15)分别为59.5%(基于半纤维素),34.4%(基于纤维素),75%(基于糠醛和LA输入)和51 wt%(基于前体)。这些值被用作使用这种开创性技术的首个用于1.3 ML / a生物喷气燃料生产的先导试验设施的过程仿真的输入信息。

来自Aspen plus模型的质量和能量分析表明,生物喷气燃料的产量为0.125吨/吨干玉米芯。来自玉米芯的碳水化合物化合物的31.0%的碳原子和47.6%的势能作为生物喷气燃料离开。由于模拟规模小和缺乏工艺优化,估计的水,蒸汽和电耗分别相对较高,分别为12.3 kg,63.7 kg和1.22 KW h。总的资本成本约为。1.3 ML / a设备的成本为3.96美元/ MM,其中设备投资的28%用于氧化的前体生产。总运营费用(OPEX)为$ 1.18 / L生物喷气燃料,包括可变成本和固定成本。玉米芯,催化催化剂和H 2的费用分别贡献23%,19%和16%。对OPEX主要故障的单点灵敏度分析表明,催化剂寿命是优先考虑的因素。使用不同的折扣和税率研究了不同容量设施(1.3 ML / a,6.5 ML / a和13 ML / a)的生物喷气燃料最低销售价格的规模经济性,其中最低MSPB为$ 0.74 / L,补贴为$ 0.31 / L,折扣率为10%。

更新日期:2017-08-08
down
wechat
bug