当前位置: X-MOL 学术J. Electrochem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct, Efficient, and Real-Time Simulation of Physics-Based Battery Models for Stand-Alone PV-Battery Microgrids
Journal of The Electrochemical Society ( IF 3.9 ) Pub Date : 2017-01-01 , DOI: 10.1149/2.0031711jes
Seong Beom Lee 1 , Chintan Pathak 1 , Venkatasailanathan Ramadesigan 2 , Wenzhong Gao 3 , Venkat R. Subramanian 1, 4
Affiliation  

With renewable energy based electrical systems becoming more prevalent in homes across the globe, microgrids are becoming widespread and could pave the way for future energy distribution. Accurate and economical sizing of stand-alone power system components, including batteries, has been an active area of research, but current control methods do not make them economically feasible. Typically, batteries are treated as a black box that does not account for their internal states in current microgrid simulation and control algorithms. This might lead to under-utilization and over-stacking of batteries. In contrast, detailed physics-based battery models, accounting for internal states, can save a significant amount of energy and cost, utilizing batteries with maximized life and usability. It is important to identify how efficient physics-based models of batteries can be included and addressed in current grid control strategies. In this paper, we present simple examples for microgrids and the direct simulation of the same including physics-based battery models. A representative microgrid example, which integrates stand-alone PV arrays, a Maximum Power Point Tracking (MPPT) controller, batteries, and power electronics, is illustrated. Implementation of the MPPT controller algorithm and physics-based battery model along with other microgrid components as differential algebraic equations is presented. The results of the proposed approach are compared with the conventional control strategies and improvements in performance and speed are reported. © The Author(s) 2017. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0031711jes] All rights reserved.

中文翻译:

基于物理的独立光伏电池微电网电池模型的直接、高效和实时仿真

随着基于可再生能源的电力系统在全球家庭中变得越来越普遍,微电网正变得越来越普遍,并可能为未来的能源分配铺平道路。包括电池在内的独立电力系统组件的精确和经济尺寸一直是一个活跃的研究领域,但目前的控制方法并不使它们在经济上可行。通常,电池被视为一个黑匣子,在当前的微电网模拟和控制算法中不考虑其内部状态。这可能会导致电池未充分利用和过度堆叠。相比之下,详细的基于物理的电池模型,考虑到内部状态,可以节省大量的能源和成本,利用寿命和可用性最大化的电池。重要的是要确定如何在当前的电网控制策略中包含和解决基于物理的高效电池模型。在本文中,我们展示了微电网的简单示例及其直接模拟,包括基于物理的电池模型。展示了一个具有代表性的微电网示例,该示例集成了独立光伏阵列、最大功率点跟踪 (MPPT) 控制器、电池和电力电子设备。介绍了 MPPT 控制器算法和基于物理的电池模型以及其他微电网组件作为微分代数方程的实现。将所提出方法的结果与传统控制策略进行比较,并报告了性能和速度的改进。© The Author(s) 2017. 由 ECS 出版。这是一篇根据知识共享署名非商业无衍生品 4.0 许可(CC BY-NC-ND,http://creativecommons.org/licenses/by-nc-nd/4.0/)条款分发的开放获取文章,允许在任何媒体中进行非商业性再利用、分发和复制,前提是原始作品没有以任何方式改变并被正确引用。如需商业再利用许可,请发送电子邮件至:oa@electrochem.org。[DOI: 10.1149/2.0031711jes] 版权所有。组织。[DOI: 10.1149/2.0031711jes] 版权所有。组织。[DOI: 10.1149/2.0031711jes] 版权所有。
更新日期:2017-01-01
down
wechat
bug