当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room-Temperature Laser Planting of High-Loading Single-Atom Catalysts for High-Efficiency Electrocatalytic Hydrogen Evolution
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2023-06-09 , DOI: 10.1021/jacs.3c02364
Bing Wang 1 , Xi Zhu 2 , Xudong Pei 3 , Weigui Liu 1 , Yecheng Leng 2 , Xiwen Yu 3 , Cheng Wang 3 , Lianghe Hu 1 , Qingmei Su 4 , Congping Wu 1 , Yingfang Yao 1, 2, 3 , Zhiqun Lin 5 , Zhigang Zou 1, 2, 6, 7
Affiliation  

Despite stunning progress in single-atom catalysis (SAC), it remains a grand challenge to yield a high loading of single atoms (SAs) anchored on substrates. Herein, we report a one-step laser-planting strategy to craft SAs of interest under an atmospheric temperature and pressure on various substrates including carbon, metals, and oxides. Laser pulses render concurrent creation of defects on the substrate and decomposition of precursors into monolithic metal SAs, which are immobilized on the as-produced defects via electronic interactions. Laser planting enables a high defect density, leading to a record-high loading of SAs of 41.8 wt %. Our strategy can also synthesize high-entropy SAs (HESAs) with the coexistence of multiple metal SAs, regardless of their distinct characteristics. An integrated experimental and theoretical study reveals that superior catalytic activity can be achieved when the distribution of metal atom content in HESAs resembles the distribution of their catalytic performance in a volcano plot of electrocatalysis. The noble-metal mass activity for a hydrogen evolution reaction within HESAs is 11-fold over that of commercial Pt/C. The laser-planting strategy is robust, opening up a simple and general route to attaining an array of low-cost, high-density SAs on diverse substrates under ambient conditions for electrochemical energy conversion.

中文翻译:

室温激光种植高负载单原子催化剂实现高效电催化析氢

尽管单原子催化(SAC)取得了惊人的进展,但产生锚定在基材上的高负载单原子(SA)仍然是一个巨大的挑战。在此,我们报告了一种一步式激光种植策略,可在大气温度和压力下在包括碳、金属和氧化物在内的各种基材上制作感兴趣的 SA。激光脉冲使得基底上同时产生缺陷,并将前体分解成单片金属SA,这些金属SA通过电子相互作用固定在所产生的缺陷上。激光种植可实现高缺陷密度,从而实现 41.8 wt% 的 SA 负载量创历史新高。我们的策略还可以合成多种金属SA共存的高熵SA(HESA),无论其独特的特性如何。综合实验和理论研究表明,当 HESA 中金属原子含量的分布类似于电催化火山图中催化性能的分布时,可以实现优异的催化活性。HESA 内析氢反应的贵金属质量活性是商业 Pt/C 的 11 倍。激光种植策略非常稳健,开辟了一条简单而通用的途径,可以在环境条件下在不同的基材上获得一系列低成本、高密度的SA,以进行电化学能量转换。HESA 内析氢反应的贵金属质量活性是商业 Pt/C 的 11 倍。激光种植策略非常稳健,开辟了一条简单而通用的途径,可以在环境条件下在不同的基材上获得一系列低成本、高密度的SA,以进行电化学能量转换。HESA 内析氢反应的贵金属质量活性是商业 Pt/C 的 11 倍。激光种植策略非常稳健,开辟了一条简单而通用的途径,可以在环境条件下在不同的基材上获得一系列低成本、高密度的SA,以进行电化学能量转换。
更新日期:2023-06-09
down
wechat
bug