当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Water Vapor Induced Superionic Conductivity in ZnPS3
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2023-06-09 , DOI: 10.1021/jacs.3c03368
Zachery W B Iton 1 , Brian C Lee 2 , Abigail Y Jiang 1 , Seong Shik Kim 2 , Michael J Brady 3 , Sammy Shaker 4 , Kimberly A See 2
Affiliation  

Next-generation batteries based on sustainable multivalent working ions, such as Mg2+, Ca2+, or Zn2+, have the potential to improve the performance, safety, and capacity of current battery systems. Development of such multivalent ion batteries is hindered by a lack of understanding of multivalent ionics in solids, which is crucial for many aspects of battery operation. For instance, multivalent ionic transport was assumed to be correlated with electronic transport; however, we have previously shown that Zn2+ can conduct in electronically insulating ZnPS3 with a low activation energy of 350 meV, albeit with low ionic conductivity. Here, we show that exposure of ZnPS3 to environments with water vapor at different relative humidities results in room-temperature conductivity increases of several orders of magnitude, reaching as high as 1.44 mS cm–1 without decomposition or structural changes. We utilize impedance spectroscopy with ion selective electrodes, ionic transference number measurements, and deposition and stripping of Zn metal, to confirm that both Zn2+ and H+ act as mobile ions. The contribution from Zn2+ to the ionic conductivity in water vapor exposed ZnPS3 is high, representing superionic Zn2+ conduction. The present study demonstrates that it is possible to enhance multivalent ion conduction of electronically insulating solids as a result of water adsorption and highlights the importance of ensuring that increased conductivity in water vapor exposed multivalent ion systems is in fact due to mobile multivalent ions and not solely H+.

中文翻译:

ZnPS3 中水蒸气诱导的超离子电导率

基于可持续多价工作离子(例如 Mg 2+、Ca 2+或 Zn 2+ )的下一代电池有可能提高当前电池系统的性能、安全性和容量。由于缺乏对固体中多价离子的了解,这种多价离子电池的开发受到阻碍,而固体中的多价离子对于电池运行的许多方面至关重要。例如,多价离子传输被认为与电子传输相关;然而,我们之前已经证明,Zn 2+可以在电子绝缘的 ZnPS 3中以 350 meV 的低活化能导电,尽管离子电导率较低。在这里,我们展示了 ZnPS 3的暴露不同相对湿度下的水蒸气环境导致室温电导率增加几个数量级,高达 1.44 mS cm –1而没有分解或结构变化。我们利用阻抗谱与离子选择性电极、离子迁移数测量以及 Zn 金属的沉积和剥离,以确认 Zn 2+和 H +都充当移动离子。Zn 2+对暴露于水蒸气的 ZnPS 3中离子电导率的贡献很高,代表超离子 Zn 2+传导。本研究表明,由于水吸附,可以增强电子绝缘固体的多价离子传导性,并强调了确保暴露于水蒸气的多价离子系统中电导率增加的重要性,事实上,这是由于移动的多价离子,而不仅仅是由于H +
更新日期:2023-06-09
down
wechat
bug