当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Broadband control of topological–spectral correlations in space–time beams
Nature Photonics ( IF 35.0 ) Pub Date : 2023-06-08 , DOI: 10.1038/s41566-023-01223-y
Marco Piccardo, Michael de Oliveira, Veronica R. Policht, Mattia Russo, Benedetto Ardini, Matteo Corti, Gianluca Valentini, Jorge Vieira, Cristian Manzoni, Giulio Cerullo, Antonio Ambrosio

The synthesis of ultrashort pulses with simultaneously tailored spatial and temporal properties opens new horizons in multimode photonics, especially when the spatial degree of freedom is controlled by robust topological structures. Current methods to shape space–time beams with correlations between their topological charges and spectral components have yielded fascinating phenomena. However, shaping is currently limited to narrow topological and/or spectral bands, greatly constraining the breadth of achievable spatiotemporal dynamics. Here we introduce a Fourier space–time shaper for ultrabroadband pulses, covering nearly 50% of the visible spectrum and carrying a wide range of topological charges with values up to 80. Instead of relying on a conventional grating with linear geometry, our approach employs a diffractive axicon with circular geometry that allows to impart azimuthal phase modulations to beams carrying orbital angular momentum. We retrieve the spatiotemporal field by introducing a characterization technique based on hyperspectral off-axis holography. The tailoring of linear topological–spectral correlations enables the control of several properties of wave packets, including their chirality, orbital radius and number of intertwined helices, whereas complex correlations allow us to manipulate their dynamics. Our space–time beams with broadband topological content will enable a host of novel applications in ultrafast light–matter excitations, microscopy and multiplexing.



中文翻译:

时空光束中拓扑-光谱相关性的宽带控制

具有同时定制的空间和时间特性的超短脉冲的合成开辟了多模光子学的新视野,特别是当空间自由度由稳健的拓扑结构控制时。目前利用拓扑电荷和光谱分量之间的相关性来塑造时空光束的方法已经产生了引人入胜的现象。然而,整形目前仅限于狭窄的拓扑和/或光谱带,极大地限制了可实现的时空动力学的广度。在这里,我们介绍了一种用于超宽带脉冲的傅立叶时空整形器,覆盖了近 50% 的可见光谱,并携带了范围广泛的拓扑电荷,其值高达 80。不是依赖于具有线性几何形状的传​​统光栅,我们的方法采用具有圆形几何形状的衍射轴棱镜,允许对携带轨道角动量的光束进行方位角相位调制。我们通过引入基于高光谱离轴全息术的表征技术来检索时空场。线性拓扑-光谱相关性的定制可以控制波包的几个特性,包括它们的手性、轨道半径和缠绕螺旋的数量,而复杂的相关性允许我们操纵它们的动力学。我们的具有宽带拓扑内容的时空光束将在超快光物质激发、显微镜和多路复用方面实现一系列新颖的应用。我们通过引入基于高光谱离轴全息术的表征技术来检索时空场。线性拓扑-光谱相关性的定制可以控制波包的几个特性,包括它们的手性、轨道半径和缠绕螺旋的数量,而复杂的相关性允许我们操纵它们的动力学。我们的具有宽带拓扑内容的时空光束将在超快光物质激发、显微镜和多路复用方面实现一系列新颖的应用。我们通过引入基于高光谱离轴全息术的表征技术来检索时空场。线性拓扑-光谱相关性的定制可以控制波包的几个特性,包括它们的手性、轨道半径和缠绕螺旋的数量,而复杂的相关性允许我们操纵它们的动力学。我们的具有宽带拓扑内容的时空光束将在超快光物质激发、显微镜和多路复用方面实现一系列新颖的应用。而复杂的相关性使我们能够操纵它们的动态。我们的具有宽带拓扑内容的时空光束将在超快光物质激发、显微镜和多路复用方面实现一系列新颖的应用。而复杂的相关性使我们能够操纵它们的动态。我们的具有宽带拓扑内容的时空光束将在超快光物质激发、显微镜和多路复用方面实现一系列新颖的应用。

更新日期:2023-06-08
down
wechat
bug