当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Collective migration of cells in geometric spaces: Intrinsic correlation length racing against extrinsic confinement size
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2023-05-25 , DOI: 10.1016/j.jmps.2023.105327
Bi-Cong Wang , Guang-Kui Xu

Many experiments showed that cell groups can exhibit various impressive motion modes (e.g., global rotation and local swirling) in different-sized geometrical spaces, with the underlying mechanisms still unclear. However, recent experiments showed that different types of cells perform distinct motion modes (i.e., global rotation and coherent oscillation) in the same constraint conditions, which brings further puzzles on the movements of collective cells. Here, by comprehensively considering the social interactions between adjacent cells and internal mechanical processes of the cell itself, we propose an active vertex model to bring physical insights into collective cell migration in geometrical constraints. Using this model, we can reproduce all reported motion modes of cells in circular constraints observed in existing experiments. Specifically, as the confinement size decreases, local swirling and global rotation modes successively appear in cell groups with finite correlation length, while eccentric rotation and coherent oscillation modes successively emerge in cell groups with scale-free correlations. We demonstrate that these distinct modes are subtly coded by the intrinsic correlation length of cell groups and the extrinsic confinement size. Unexpectedly, we discover that, in small-size confinements, cell groups with scale-free correlations can spontaneously transition from eccentric rotation into coherent oscillation modes, because the strong social interactions reconcile the movements of all cells. In addition, we propose a velocity indicator that can directly distinguish migration modes emerging in small-scale confinements. These findings are in broad agreement with many experiments, and shed light on the spatiotemporal dynamics of active matter.



中文翻译:

几何空间中细胞的集体迁移:内在相关长度与外在限制大小的竞争

许多实验表明,细胞群可以在不同大小的几何空间中表现出各种令人印象深刻的运动模式(例如,全局旋转和局部旋转),但其潜在机制尚不清楚。然而,最近的实验表明,不同类型的细胞在相同的约束条件下执行不同的运动模式(即,全局旋转和相干振荡),这给集体细胞的运动带来了进一步的困惑。在这里,通过综合考虑相邻细胞之间的社会相互作用和细胞本身的内部机械过程,我们提出了一个活动顶点模型,以将物理洞察力引入几何约束下的集体细胞迁移。使用此模型,我们可以重现现有实验中观察到的圆形约束中所有报告的细胞运动模式。具体来说,随着限制尺寸的减小,局部旋转和全局旋转模式依次出现在具有有限相关长度的细胞群中,而偏心旋转和相干振荡模式依次出现在具有无标度相关的细胞群中。我们证明这些不同的模式由细胞群的内在相关长度和外在限制大小巧妙地编码。出乎意料的是,我们发现,在小尺寸限制中,具有无标度相关性的细胞群可以自发地从偏心旋转转变为相干振荡模式,因为强烈的社会相互作用协调了所有细胞的运动。此外,我们提出了一种速度指示器,可以直接区分小规模限制中出现的迁移模式。

更新日期:2023-05-29
down
wechat
bug