显示样式:     当前期刊: Microbiological Research    加入关注       排序: 导出
  • Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.)
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-26
    Premsing Shivsing Marag, Archna Suman

    Maize, a crop cultivated worldwide, was investigated for plant tissue and crop stage specific colonization of endophytic bacteria. Such bacterial interactions have high potential to enhance maize grain yield by means of biological nitrogen fixation and/or plant growth promoting activities. In this study endophytic bacteria were isolated from a hybrid PEEHM-5 and composite PC-4 maize varieties using root, stem and leaf tissues of plants at vegetative, flowering and maturity stages of growth. PEEHM-5 harbored higher endophytic bacterial population than PC-4 at all growth stages, with highest in roots and at flowering stage. Morphologically 188 different endophytic isolates (82 from PEEHM-5, 106 from PC-4) were screened for plant growth promoting attributes viz. P, K, Zn solubilization, production of hormones, siderophore, ACC deaminase, HCN, biological nitrogen fixation and biocontrol of two maize fungal pathogens. Thirty one potential PGP isolates on RFLP analysis of their amplified 16S rRNA gene, were clustered in 13 phylogenetic groups. On sequencing and blasting of amplified 16S rRNA gene of representative isolates from each group identified PC-4 endophytic bacterial isolates as Bacillus aryabhattai, Pantoea cypripedii, Bacillus licheniformis, Klebsiella sp., Pantoea dispersa, Klebsiella variicola, Pantoea sp., Agrobacterium larrymoorei and PEEHM-5 endophytic bacterial isolates as Bacillus sp., Bacillus amyloliquefaciens, Lactococcus lactis, Bacillus cereus and Staphylococcus hominis. In planta evaluation of potential isolates at variable chemical fertilizer input indicated their potential in compensating nearly 25% of the fertilizer input as observed on their improvement of shoot and root parameters. Lactococcus lactis inoculation influenced maximum followed by Pantoea and Klebsiella isolates.

  • Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-24
    Analía Príncipe, Maricruz Fernandez, Milenka Torasso, Agustina Godino, Sonia Fischer

    The development of alternatives for the use of chemical pesticides for plant disease control is the present-day and ongoing challenge for achieving sustainable agriculture. Pseudomonas fluorescens SF4c, native strain from wheat, produces tailocins (phage-tail-like bacteriocins) with antimicrobial activity against several phytopathogenic strains. We thus investigated the efficacy of foliar application of these bacteriocins to control the bacterial-spot disease in tomato caused by Xanthomonas vesicatoria Xcv Bv5-4a. The disease severity and incidence index were reduced by 44 and 36%, respectively; while the number of viable cells of X. vesicatoria Xcv Bv5-4a decreased after bacteriocin treatment. Furthermore, bacteriocin was effective in reducing bacterial-spot-disease symptoms on tomato fruits even when applied 12 h after infection. Tailocin activity was not affected by abiotic influences such as adjuvant, light and temperature and, biotic factors such as apoplastic-fluids. In contrast, no antibacterial activity of these tailocins was observed when the bacteriocin was exposed to extremely dry conditions. Finally, that no cytotoxic effects on mammalian cells were observed with this representative tailocins is highly significant and demonstrates the safety of such compounds in humans. All these findings indicate that the SF4c tailocins represent an attractive alternative to copper-containing bactericides for use in the control of bacterial spot.

  • Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-22
    Anaya Raj Pokhrel, Hue Thi Nguyen, Dipesh Dhakal, Amit Kumar Chaudhary, Jae Kyung Sohng

    The orphan histidine kinase (HK) from Streptomyces peucetius ATCC 27952 (ohkAsp) was found to be implicated in the regulation of doxorubicin (DOX)/daunorubicin (DNR) biosynthesis, self-defense and developmental attributes. OhkAsp is a homolog of OhkA from Streptomyces coelicolor and Streptomyces avermitilis (with 73 and 75% identity). As in its homologs, S. peucetius mutant with deletion of ohkAsp was found to enhance metabolite biosynthesis and impaired the morphological differentiation. But, unlike its homologs from Streptomyces coelicolor and Streptomyces avermitilis, differential enhancement in level of secondary metabolite production was found in overexpression mutants apart from deletion mutant. The deflection in characteristics of OhkA in its homologue from S. peucetius ATCC 27952, and its imminent implications was monitered by making various mutants with differential expression level of ohkAsp. The variations were observed in the morphology of mutants, transcriptional level of effectors and regulators of DOX/DNR biosynthesis pathway, DOX/DNR precursor pool and biomass accumulation. Based on comparisons of domain arrangements among its homologs, Low Complexity Region (LCR) present on the OhkAsp was the only domain that stood out. Further, the LCR on OhkAsp was found to be overlapping with a putative receiver domain responsible for interaction with response regulator. The imminent implications of differential expression level of ohkAsp on: regulation and biosynthesis of DOX/DNR, morphological differentiation, DOX/DNR precursor pool and biomass accumulation were explored in this study.

  • Novel Trichoderma strains. isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-23
    Harekrushna Swain, Totan Adak, Arup K. Mukherjee, Prasun K. Mukherjee, Pratap Bhattacharyya, Shantiprava Behera, Torit Baran Bagchi, Rashmishree Patro, Shasmita, Ansuman Khandual, M.K. Bag, T.K. Dangar, S. Lenka, M. Jena

    This study is the first time report of utilization of Trichoderma spp. isolated from different tree barks from Odisha state of India for rice crop health management and higher productivity. Six isolates of Trichoderma spp. were identified based on the morphological characteristics and species determination was performed by molecular assays. One of the isolated strains determined as Trichoderma erinaceum outperformed others. Trichoderma erinaceum controlled three soil borne plant pathogens i.e. Rhizoctonia solani, Sclerotium rolfsii and Sclerotium oryzae effectively under controlled condition and R. solani and Helminthosporium oryzae under filed condition. Seed treatments with the formulated isolates improved the germination rate of rice and enhanced vigour. These parameters along with higher chlorophyll content could be related to higher yield observed in two rice varieties; Karuna and Shabhagidhan. Among the six isolates tested, Trichoderma erinaceum treatment recorded highest yield. Significantly higher expression of some stress related enzymes was observed in Trichoderma treated plants which helped in better crop growth both under biotic and abiotic stresses. These isolates helped both the varieties to accumulate more nutrients This study proves that Trichoderma erinaceum obtained from tree bark may be incorporated in integrated rice crop management both as biocontrol agent and biofertilizer.

  • Role of hypothetical protein YicS in the pathogenicity of Avian Pathogenic Escherichia coli in vivo and in vitro
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-13
    Renu Verma, Thaís Cabrera Galvão Rojas, Renato Pariz Maluta, Janaína Luisa Leite, Gerson Nakazato, Wanderley Dias de Silveira

    Avian Pathogenic Escherichia coli (APEC) strains belong to the extra-intestinal pathogenic group of E. coli (ExPEC) that causes colibacillosis in poultry. A variety of putative virulence factors of APEC are recognized as potent causes of pathogenicity, the mechanisms underlying their pathogenicity are still not fully understood. The role of yicS in the virulence of pathogenic E. coli is still unclear. Thus, yicS may be related to biofilm formation, which in some bacteria plays a role in pathogenicity. Therefore, the fact that this gene appears to be under positive selection pressure suggests that yicS may be associated with the pathogenicity of APEC. To better understand the role of yicS protein in APEC biological characteristics and pathogenicity, we deleted yicS in an APEC Swollen Head Syndrome strain (APEC strain SCI-07) and studied its effects by comparing wild type and isogenic mutants through comprehensive in vitro and in vivo assays. We demonstrated that yicS plays a role in pathogenicity of APEC. We suggest that the yicS gene, which encodes an exporter protein, has a significant role in biofilm formation, motility, invasion of CEC-32 and Hep-2 cells and APEC pathogenicity in a day-old chick model.

  • Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-12
    Gylaine Vanissa Tchuisseu Tchakounté, Beatrice Berger, Sascha Patz, Fankem Henri, Silke Ruppel

    Exploiting native plant growth-promoting rhizobacteria (PGPR) in Cameroonian agro-ecosystems provides a means to improve plant–microbe interactions that may enhance ecosystem sustainability and agricultural productivity in an environmentally eco-friendly way. Consequently, we aimed to investigate the community structure and functional PGPR diversity of maize grown in Cameroon. Native bacteria isolated from Cameroon maize rhizosphere soil were identified by partial 16S rRNA gene sequencing and screened for traits particularly relevant for Cameroon low-fertility soil conditions, such as their abilities to tolerate high concentrations of salt, and their plant growth- promoting potential. Genetic and functional diversity was characterized according to their phylogenetic affiliation. A total of 143 bacteria were identified and assigned to 3 phyla (Actinobacteria, Firmicutes and Proteobacteria), 13 families and 20 genera. Bacillus (31.5%), Arthrobacter (17.5%), and Sinomonas (13.3%) were the most abundant genera identified among all the isolates. Based on their in vitro characterization, 88.1% were salt tolerant at 2% NaCl, but only 16.8% could tolerate 8% NaCl, 50.4% solubilized phosphate, 10.5% possessed the nifH gene, and 19.6% produced siderophores. Six isolates affiliated to the most abundant genera identified in this work, Bacillus and Arthrobacter, carrying multiple or only single tested traits were selected to evaluate their growth- promoting potential in an in vitro maize germination assay. Three strains possessing multiple traits induced significantly increased hypocotyl and root length, and improved the vigor index of maize seeds compared to non-inoculated control seeds. Our results indicate the potential of selected indigenous Cameroon rhizobacteria to enhance maize growth.

  • Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-06
    Setu Bazie Tagele, Sang Woo Kim, Hyun Gu Lee, Hyun Seung Kim, Youn Su Lee

    Plant growth promoting (PGP) bacteria enhance plant growth and are a green alternative to chemical fertilizers. In our study, an effective plant growth promoting rhizobacteria (PGPR) strain, KNU17BI1, was isolated from rhizospheric soil of maize, South Korea. The strain was tested in vitro for specific PGP and antifungal traits, such as phosphate solubilization, zinc solubilization, indole acetic acid (IAA) production, ammonia production, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, siderophore hydrogen cyanide production (HCN) and hydrolytic enzyme activity. Furthermore, in viro antifungal activity was done in a laboratory and in vivo effect of KNU17BI1 on banded leaf and sheath blight intensity as well as plant growth promotion on maize seedling were conducted under greenhouse conditions. The strain was found to be highly effective toward all the parameters except HCN production. The strain KNU17BI1 was identified on the basis of 16S RNA and multilocus sequence analysis (MLSA) and confirmed as Burkholderia contaminans. This study for the first time demonstrated potent in vitro antifungal activity of B. contaminans against Rhizoctonia solani AG-1(IA), Pythium graminicola, Fusarium moniliforme, Alternaria alternata, Alternaria solani, Fusarium graminearum, Stemphylium botryosum Wallr, Colletotrichum dematium, Stemphylium lycopersici and Fusarium oxysporum f.sp. melonis. Furthermore, in this study, for the first time, the potential of B. contaminans stain KNU17BI1 in controlling banded leaf and sheath blight of maize caused by R. solani AG-1(IA) was reported. Therefore, further studies are warranted on the structural identification of actual compounds behind such activities that would be exploited further for biocontrol as well as plant growth promotion.

  • Signature-tagged mutagenesis screening revealed the role of lipopolysaccharide biosynthesis gene rfbH in smooth-to-rough transition in Salmonella Enteritidis
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-05
    Yang Jiao, Zemiao Xia, Xiaohui Zhou, Yaxin Guo, Rongxian Guo, Xilong Kang, Kaiyue Wu, Jun Sun, Xiulong Xu, Xinan Jiao, Zhiming Pan, Xiufan Liu

    Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) is a major cause of foodborne diseases for humans. The completeness of the O-chain antigen of Lipopolysaccharide (LPS) determines whether a S. Enteritidis strain is smooth or rough. However, genes that are involved in the synthesis of LPS and rough-smooth variation are not completely understood. In this study, we used monoclonal antibody against O-antigens (O9 mAb) to identify novel factors that are involved in LPS synthesis and rough variation in S. Enteritidis by using signature-tagged mutagenesis (STM) technique. Our results showed that transposon insertion in the gene rfbH led to different LPS phenotype, auto-aggregation characteristic, motility and resistance to environmental stress compared with SE wild-type strain C50041. In addition, sera tests showed that rfbH mutant does not elicit specific antibodies against O-antigens in vaccinated animals. Taken together, the S. Enteritidis rfbH gene is implicated in LPS biosynthesis, rough variation, sera distinguishable reaction, motility and stress resistance. The rfbH mutant strain could be potentially used as a distinguishable vaccine or a live vector to deliver drugs and antibodies in vivo.

  • Clioquinol induces G2/M cell cycle arrest through the up-regulation of TDH3 in Saccharomyces cerevisiae
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-04
    Chongjia Yan, Song Wang, Jian Wang, Hui Li, Zhiwei Huang, Jing Sun, Min Peng, Wenbin Liu, Ping Shi

    Clioquinol (CQ) has been used as a classical antimicrobial agent for many years. However, its mode of action is still unclear. In our study, the growth of Candida albicans and Saccharomyces cerevisiae was inhibited by CQ. It did not kill yeast cells, but shortened G1 phase and arrested cell cycle at G2/M phase. By using two-dimensional electrophoresis based proteomic approach, six proteins were found to be significantly affected by CQ. Among them, four (PDC1, ADH1, TDH3, IPP1) were up-regulated and the other two (TDH1 and PGK1) were down-regulated. According to the Saccharomyces Genome Database (SGD), these proteins were involved in various biological processes including glycolytic fermentation, gluconeogenesis, glycolytic process, amino acid catabolism, redox reaction and reactive oxygen species metabolic process. It was noted that there was a link between TDH3 and cell cycle. The overexpression of TDH3 phenocopied CQ treatment and arrested the cell cycle at G2/M phase. RT-PCR analysis showed that the mRNA levels of CLN3 and CDC28, critical genes for passage through G1 phase, were up-regulated after the treatment of CQ as well as the overexpression of TDH3. It demonstrates that CQ inhibits the growth of yeast by up-regulating the expression of TDH3 to influence the cell cycle. It is expected to provide new insights for the antimicrobial mechanism of CQ.

  • The developmental regulator Pcz1 affects the production of secondary metabolites in the filamentous fungus Penicillium roqueforti
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-04
    Juan F. Rojas-Aedo, Carlos Gil-Durán, Alejandra Goity, Inmaculada Vaca, Gloria Levicán, Luis F. Larrondo, Renato Chávez

    Penicillium roqueforti is used in the production of several kinds of ripened blue-veined cheeses. In addition, this fungus produces interesting secondary metabolites such as roquefortine C, andrastin A and mycophenolic acid. To date, there is scarce information concerning the regulation of the production of these secondary metabolites. Recently, the gene named pcz1 (Penicillium C6 zinc domain protein 1) was described in P. roqueforti, which encodes for a Zn(II)2Cys6 protein that controls growth and developmental processes in this fungus. However, its effect on secondary metabolism is currently unknown. In this work, we have analyzed how the overexpression and down-regulation of pcz1 affect the production of roquefortine C, andrastin A and mycophenolic acid in P. roqueforti. The three metabolites were drastically reduced in the pcz1 down-regulated strains. However, when pcz1 was overexpressed, only mycophenolic acid was overproduced while, on the contrary, levels of roquefortine C and andrastin A were diminished. Importantly, these results match the expression pattern of key genes involved in the biosynthesis of these metabolites. Taken together, our results suggest that Pcz1 plays a key role in regulating secondary metabolism in the fungus Penicillium roqueforti.

  • Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-04
    Luciane Corbellini Rufatto, Paola Luchtenberg, Charlene Garcia, Christine Thomassigny, Sylvie Bouttier, Françoise Dumas, João Antonio Pêgas Henriques, Mariana Roesch-Ely, Sidnei Moura

    The indiscriminate use of antibiotics is causing an increase in bacterial resistance, complicating therapeutic planning. In this context, natural products have emerged as major providers of bioactive compounds. This work performs a bioguided study of Brazilian red propolis to identify compounds with antibacterial potential and to evaluate their cytotoxicity against non-tumour cells. Using bioguided fractionation performed with the hydroalcoholic extract of red propolis from Alagoas, it was possible to obtain subfractions with remarkable bacteriostatic activity compared with the precursor fractions. The SC2 subfraction was highlighted and showed the best results with minimal inhibitory concentrations (MICs) of 56.75, 28.37, 454.00, and 227.00 μg.mL−1 against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, respectively. However, this study also revealed a cytotoxic effect against the non-tumour Vero cell line. Furthermore, through chemical analyses using high resolution mass spectrometry, high performance liquid chromatography with UV detection, and gas chromatography coupled to mass spectrometry, we verified the presence of important marker compounds in the fractions and extracts, including formononetin (m/z 267.0663), biochanin A (m/z 283.0601), and liquiritigenin (m/z 255.0655). The results obtained in this study suggest an important antibacterial potential of red propolis subfractions. In this context, the bioguided fractionation has been a useful process, due to its ability to isolate and concentrate active compounds in a logical and rational way.

  • Master mechanisms of Staphylococcus aureus: consider its excellent protective mechanisms hindering vaccine development
    Microbiol. Res. (IF 3.037) Pub Date : 2018-05-04
    Xu Zhang, Manukumar H. Marichannegowda, Kadalipura P. Rakesh, Hua-Li Qin

    Lack of known mechanisms of protection against Staphylococcus aureus in humans represents an important risk factor for skin infections and bacteremia in patients, intern hindering the development of efficacious vaccines. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. To develop a promising vaccine against S. aureus, it is pre-requisite to clear understanding of cutaneous, innate and adaptive immune response. The S. aureus dampening the humoral response, T cell help, blocking complement factors, and killing immune players by its toxins are the important factors need to understand clearly. We hypothesized that the master mechanism of S. aureus counteracts may hindering the immune action which may result in failure of target-oriented vaccine development. Developing immunological interventions that can effectively block the S. aureus counteracting mechanisms are the key success for a developing vaccine for the future was warranted.

  • Biotechnological applications of bacteriophages: State of the art
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-30
    Liliam K. Harada, Erica C. Silva, Welida F. Campos, Fernando S. Del Fiol, Marta Vila, Krystyna Dąbrowska, Victor N. Krylov, Victor M. Balcão

    Bacteriophage particles are the most abundant biological entities on our planet, infecting specific bacterial hosts in every known environment and being major drivers of bacterial adaptive evolution. The study of bacteriophage particles potentially sheds light on the development of new biotechnology products. Bacteriophage therapy, although not new, makes use of strictly lytic phage particles as an alternative in the antimicrobial treatment of resistant bacterial infections and is being rediscovered as a safe method due to the fact that these biological entities devoid of any metabolic machinery do not have affinity to eukaryotic cells. Furthermore, bacteriophage-based vaccination is emerging as one of the most promising preventive strategies. This review paper discusses the biological nature of bacteriophage particles, their mode(s) of action and potential exploitation in modern biotechnology. Topics covered in detail include the potential of bacteriophage particles in human infections (bacteriophage therapy), nanocages for gene delivery, food biopreservation and safety, biocontrol of plant pathogens, phage display, bacterial biosensing devices, vaccines and vaccine carriers, biofilm and bacterial growth control, surface disinfection, corrosion control, together with structural and functional stabilization issues.

  • Evidence for Up and Down Regulation of 450 genes by rpoB12 (rif) Mutation and their Implications in Complexity of Transcription Modulation in Escherichia coli
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-30
    Shanmugaraja Meenakshi, M. Hussain Munavar

    Analyses of mutations in rpoB subunit of Escherichia coli that lead to resistance to rifampicin have been invaluable in providing insight into events during transcription continue to be discovered. Earlier we reported that rpoB12 suppresses over-expression of cps genes in Δlon mutant of E.coli, by interfering with the transcription of rcsA. Here we report Microarray based Transcriptome profile of Δlon and Δlon rpoB12 strains. The data analyses clearly reveal that rpoB12 mutation results in the differential expression of ∼450 genes. The transcription profiles of some of the genes namely, rcsA, gadE, csgD, bolA, ypdI, dnaJ, clpP, csrA and hdeA are significantly altered, particularly the genes implicated in virulence. Some of the phenotypic traits namely, biofilm formation, motility, curli synthesis and ability to withstand acidic stress in a lon+rpoB12 strain were assessed. The results clearly indicate that rpoB12 up-regulates biofilm formation and curli synthesis while it makes the cells sensitive for growth in acidic medium and inhibits motility almost completely. Furthermore, rpoB12 modulates the expression profile of a significant number of genes involved in stress responses, genes encoding small RNAs. Thus, this study reveals the versatile role of the rpoB12 mutation, especially its impact on the regulation of genes related to virulence and highlights its medical importance.

  • Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-30
    Sajad Ali, Bashir Ahmad Ganai, Azra N Kamili, Ajaz Ali Bhat, Zahoor Ahmad Mir, Javaid Akhter Bhat, Anshika Tyagi, Sheikh Tajamul Islam, Muntazir Mushtaq, Prashant Yadav, Sandhya Rawat, Anita Grover

    Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signalling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides.

  • 更新日期:2018-04-25
  • Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-22
    Aradhana Mishra, Satyendra Pratap Singh, Sahil Mahfooz, Arpita Bhattacharya, Nishtha Mishra, Pramod Arvind Shirke, C.S. Nautiyal

    Despite the vast exploration of endophytic microbes for growth enhancement in various crops, knowledge about their impact on the production of therapeutically important secondary metabolites is scarce. In the current investigation, chitinolytic bacterial endophytes were isolated from selected medicinal plants and assessed for their mycolytic as well as plant growth promoting potentials. Among them the two most efficient bacterial endophytes namely Bacillus amyloliquefaciens (MPE20) and Pseudomonas fluorescens (MPE115) individually as well as in combination were able to modulate withanolide biosynthetic pathway and tolerance against Alternaria alternata in Withania somnifera. Interestingly, the expression level of withanolide biosynthetic pathway genes (3-hydroxy-3-methylglutaryl co-enzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductase, farnesyl di-phosphate synthase, squalene synthase, cytochrome p450, sterol desaturase, sterol Δ-7 reductase and sterol glycosyl transferases) were upregulated in plants treated with the microbial consortium under A. alternata stress. In addition, application of microbes not only augmented withaferin A, withanolide A and withanolide B content (1.52-1.96, 3.32-5.96 and 12.49-21.47 fold, respectively) during A. alternata pathogenicity but also strengthened host resistance via improvement in the photochemical efficiency, normalizing the oxidized and non-oxidized fraction, accelerating photochemical and non-photochemical quantum yield, and electron transport rate. Moreover, reduction in the passively dissipated energy of PSI and PSII in microbial combination treated plants corroborate well with the above findings. Altogether, the above finding highlights novel insights into the underlying mechanisms in application of endophytes and emphasizes their capability to accelerate biosynthesis of withanolides in W. somnifera under biotic stress caused by A. alternata.

  • 更新日期:2018-04-25
  • Comparison of genomic islands in cyanobacteria: evidence of bacteriophage-mediated horizontal gene transfer from eukaryotes
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-11
    James S. Godde, Shakuntala Baichoo, Zahra Mungloo-Dilmohamud, Yasmina Jaufeerally-Fakim

    A number of examples of putative eukaryote-to-prokaryote horizontal gene transfer (HGT) have been proposed in the past using phylogenetic analysis in support of these claims but none have attempted to map these gene transfers to the presence of genomic islands (GIs) in the host. Two of these cases have been examined in detail, including an ATP sulfurylase (ATPS) gene and a class I fructose bisphosphate aldolase (FBA I) gene that were putatively transferred to cyanobacteria of the genus Prochlorococcus from either green or red algae, respectively. Unlike previous investigations of HGT, parametric methods were initially used to detect genomic islands, then more traditional phylogenomic and phylogenetic methods were used to confirm or deny the HGT status of these genes. The combination of these three methods of analysis- detection of GIs, the determination of genomic neighborhoods, as well as traditional phylogeny, lends strong support to the claim that trans-domain HGT has occurred in only one of these cases and further suggests a new insight into the method of transmission of FBA I, namely that cyanophage-mediated transfer may have been responsible for the HGT event in question. The described methods were then applied to a range of prochlorococcal genomes in order to characterize a candidate for eukaryote-to-prokaryote HGT that had not been previously studied by others. Application of the same methodology used to confirm or deny HGT for ATPS and FBA I identified a ⊗12 fatty acid desaturase (FAD) gene that was likely transferred to Prochlorococcus from either green or red algae.

  • Tissue age and plant genotype affect the microbiota of apple and pear bark
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-10
    Elena Arrigoni, Livio Antonielli, Massimo Pindo, Ilaria Pertot, Michele Perazzolli

    Plant tissues host complex fungal and bacterial communities, and their composition is determined by host traits such as tissue age, plant genotype and environmental conditions. Despite the importance of bark as a possible reservoir of plant pathogenic microorganisms, little is known about the associated microbial communities. In this work, we evaluated the composition of fungal and bacterial communities in the pear (Abate and Williams cultivars) and apple (Golden Delicious and Gala cultivars) bark of three/four-year-old shoots (old bark) or one-year-old shoots (young bark), using a meta-barcoding approach. The results showed that both fungal and bacterial communities are dominated by genera with ubiquitous attitudes, such as Aureobasidium, Cryptococcus, Deinococcus and Hymenobacter, indicating intense microbial migration to surrounding environments. The shoot age, plant species and plant cultivar influenced the composition of bark fungal and bacterial communities. In particular, bark communities included potential biocontrol agents that could maintain an equilibrium with potential plant pathogens. The abundance of fungal (e.g. Alternaria, Penicillium, Rosellinia, Stemphylium and Taphrina) and bacterial (e.g. Curtobacterium and Pseudomonas) plant pathogens was affected by bark age and host genotype, as well as those of fungal genera (e.g. Arthrinium, Aureobasidium, Rhodotorula, Sporobolomyces) and bacterial genera (e.g. Bacillus, Brevibacillus, Methylobacterium, Sphingomonas and Stenotrophomonas) with possible biocontrol and plant growth promotion properties.

  • Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-07
    Daniela C. Sabaté, Carolina Pérez Brandan, Gabriela Petroselli, Rosa Erra-Balsells, M.Carina Audisio

    Bacillus sp. B19, Bacillus sp. P12 and B. amyloliquefaciens B14 were isolated from soils of Salta province, and PGPR properties on the common bean (Phaseolus vulgaris L.) cv. Alubia and antagonistic activity against Sclerotinia sclerotiorum were studied. It was determined that B19 and P12 increased crop germination potential (GP) from the common bean by 14.5% compared to control seeds; these strains also increased root length (10.4 and 15%, respectively) and stem length (20.2 and 30%, respectively) compared to the control; however, as for the B14 strain, no increases in growth parameters were detected. In addition, all the treatments that combined two bacilli: B14 + B19, B14 + P12 and B19 + P12, generated beneficial effects on GP and seedling growth compared to control seeds, but not compared to a single inoculant. B19 and P12 strains synthesized auxins at concentrations of 5.71 and 4.90 mg/mL, respectively, and it was qualitatively determined that they synthesize siderophores. In addition, previous studies have determined that B14 produces auxins in a concentration of 10.10 mg/ml, and qualitatively synthesizes siderophores. The phytosanitary state of the white bean cv. Alubia control seeds revealed bacterial contamination in 87% of all the evaluated seeds and different fungi such as Cladosporium sp., Fusarium sp., and Rhizopus sp. Bean seeds treated with B14, B19 or P12 showed no growth of contaminating bacteria or of pathogenic fungi; in fact, bacilli inoculum development was observed in all seeds. Additionally, B19, P12 and B14 strains inhibited in vitro the development of 9 native S. sclerotiorum strains isolated from the Salta region, with FI ranging between 60 and 100%. The three Bacillus strains synthesized different isoforms of the lipopeptides: surfactin, iturin, and fengycin in the presence of S. sclerotiorum, as determined by MALDI-TOF. In the in vivo trials, when common bean seeds were grown in soils contaminated with S. sclerotiorum, an incidence of 100% was determined when the seeds were not treated with any Bacillus. Seeds treated with the chemical fungicide and sown in S. sclerotiorum-infested soil did not produce seed emergence, while the inoculation of the seeds with B14 + P12, B14 + B19 or B19 + P12 reduced the effect of the pathogen by 46, 43 and 25%, respectively. Disease progression in B14 + P12 and B14 + B19 treatments was significantly lower than in the remaining treatments, with an AUDPC of 873.75 and 1071, respectively.

  • Phenotypic and genotypic characterisation of an unique indigenous hypersaline unicellular cyanobacterium, Euhalothece sp.nov
    Microbiol. Res. (IF 3.037) Pub Date : 2018-04-03
    Trisha Mogany, Feroz M. Swalaha, Mushal Allam, Phillip Senzo Mtshali, Arshad Ismail, Sheena Kumari, Faizal Bux
  • Antibiotic-producing Pseudomonas fluorescens mediates Rhizome Rot Disease resistance and promotes plant growth in Turmeric plants
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-27
    S.R. Prabhukarthikeyan, U. Keerthana, T. Raguchander

    Rhizome rot of turmeric caused by Pythium aphanidermatum is a major threat to turmeric-cultivating areas of India. This study intends to evaluate the performance of fluorescent pseudomonads against Rhizome rot disease and understand the resistance mechanism in Turmeric plants. Fluorescent pseudomonads were screened against Pythium aphanidermatum using dual culture. Selected strains were evaluated for the performance of growth promoting attributes and the presence of antibiotic genes through PCR analysis. Strain FP7 recorded the maximum percent inhibition of P. aphanidermatum under in vitro conditions. Strains FP7 and TPF54 both increased plant growth in turmeric plants in vitro. Strain FP7 alone contained all the evaluated antibiotic biosynthetic genes. Talc and liquid-based formulations were prepared with effective strain and tested for its biocontrol activities under both glasshouse and field conditions. Enzymatic activities of the induced defense enzymes such as PO, PPO, PAL, CAT and SOD were estimated and subjected to spectrophotometric analysis. A combination of rhizome dip and soil drench of FP7 liquid formulation treatment remarkably recorded the minimum disease incidence, higher defense enzymes, maximum plant growth and yield under glasshouse and field conditions. Application of strain FP7 increased the defense molecules, plant growth and yield in turmeric plants thereby reducing the incidence of rhizome rot disease. Moreover, this study has a potential to be adopted for sustainable and eco-friendly turmeric production.

  • Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-23
    Li-Li Geng, Gao-Xiang Shao, Ben Raymond, Mei-Ling Wang, Xiao-Xiao Sun, Chang-Long Shu, Jie Zhang

    Rhizosphere microorganisms contribute to the health and development of crops and these beneficial microbes are recruited to the root-zone when plants experience biotic/abiotic stress. The subterranean pests Holotrichia parallela cause severe crop loss in peanut (Arachis hypogaea L.) fields. Hypothesizing that infestation by H. parallela larva may influence the composition of rhizosphere microbial communities, deep sequencing of V3 and V4 hypervariable regions of 16S rRNA gene was used to characterize the rhizosphere bacteria of infested and uninfested peanuts. A total of 2,673,656 reads were generated and an average of 2,558 OTUs were obtained for each sample. Comparisons of rhizosphere bacterial community structure of peanuts with those infested by H. parallela larva revealed that the relative abundance of Proteobacteria and Bacteroidetes increased, while that of Actinobacteria decreased in the rhizosphere with infestation. A significant shift in bacterial communities was observed within 24 h after infestation by principal coordinate analysis. For the 332 genera identified in 24 h treatment, infestation of white grubs led to the significant changes of abundance of 67 genera. An increase in the Pseudomonas genus of infested-samples for 24 h was verified by real-time qPCR. Our results indicate H. parallela larvae infestation can quickly leads to the change of peanut rhizosphere microbiome and enrichment of specific bacterial species. But the effects were not persistent. This study provides the insight into the function of rhizosphere microbiome in the interaction between subterranean pests and crops.

  • Fungal communities associated with Evernia prunastri, Ramalina fastigiata and Pleurosticta acetabulum: three epiphytic lichens potentially active against Candida biofilms
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-21
    Aurélie Lagarde, Patricia Jargeat, Mélanie Roy, Marion Girardot, Christine Imbert, Marion Millot, Lengo Mambu

    Fungal communities associated to three epiphytic lichens active against Candida, were investigated using culture-based methods We hypothetized that associated fungi would contribute to lichens activities. The ability of specific fungi to grow inside or outside lichens was investigated. To detect biogenesis pathways involved in the production of secondary metabolites, genes coding for nonribosomal peptide synthetase (NRPS) and polyketide synthase I (PKS I) were screened by PCR from fungal DNA extracts. Both endo and epilichenic communities were isolated from two fructicose (Evernia prunastri and Ramalina fastigiata) and one foliose (Pleurosticta acetabulum) lichens. A total of 86 endolichenic and 114 epilichenic isolates were obtained, corresponding to 18 and 24 phylogenetic groups respectively suggesting a wide diversity of fungi. The communities and the species richness were distinct between the three lichens which hosted potentially new fungal species. Additionally, the endo- and epilichenic communities differed in their composition: Sordariomycetes were particularly abundant among endolichenic fungi and Dothideomycetes among epilichenic fungi. Only a few fungi colonized both habitats, such as S. fimicola, Cladosporium sp1 and Botrytis cinerea. Interestingly, Nemania serpens (with several genotypes) was the most abundant endolichenic fungus (53% of isolates) and was shared by the three lichens. Finally, 12 out of 36 phylogenetic groups revealed the presence of genes coding for nonribosomal peptide synthetase (NRPs) and polyketide synthase I (PKS I). This study shows that common lichens are reservoirs of diverse fungal communities, which could potentially contribute to global activity of the lichen and, therefore, deserve to be isolated for further chemical studies.

  • Quorum sensing: A less known mode of communication among fungi
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-21
    Sajad Ahmad Padder, Rajendra Prasad, Abdul Haseeb Shah

    Quorum sensing (QS), a density-dependent signaling mechanism of microbial cells, involves an exchange and sense of low molecular weight signaling compounds called autoinducers. With the increase in population density, the autoinducers accumulate in the extracellular environment and once their concentration reaches a threshold, many genes are either expressed or repressed. This cell density-dependent signaling mechanism enables single cells to behave as multicellular organisms and regulates different microbial behaviors like morphogenesis, pathogenesis, competence, biofilm formation, bioluminescence, etc guided by environmental cues. Initially, QS was regarded to be a specialized system of certain bacteria. The discovery of filamentation control in pathogenic polymorphic fungus Candida albicans by farnesol revealed the phenomenon of QS in fungi as well. Pathogenic microorganisms primarily regulate the expression of virulence genes using QS systems. The indirect role of QS in the emergence of multiple drug resistance (MDR) in microbial pathogens necessitates the finding of alternative antimicrobial therapies that target QS and inhibit the same. A related phenomenon of quorum sensing inhibition (QSI) performed by small inhibitor molecules called quorum sensing inhibitors (QSIs) has an ability for efficient reduction of gene expression regulated by quorum sensing. In the present review, recent advancements in the study of different fungal quorum sensing molecules (QSMs) and quorum sensing inhibitors (QSIs) of fungal origin along with their mechanism of action and/or role/s are discussed.

  • Inhibition of coxsackievirus B4 by Lactobacillus plantarum
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-19
    Mattia Pia Arena, Firas Elmastour, Famara Sane, Djamel Drider, Daniela Fiocco, Giuseppe Spano, Didier Hober

    The enterovirus Coxsackievirus B4 (CV-B4) can infect different human tissues and provoke abnormal function or destruction of various organs and cells. Moreover, its infections have been linked to the onset of type 1 diabetes. Coxsackievirus B4 is classified as a “challenging virus”, due to the intense yet vain efforts to find effective prevention and therapeutic agents, especially within biological compounds. Lactobacillus plantarum is a lactic acid bacterium that is endowed with probiotic properties, and holds great potential for applications in medical and food industry sectors. Several compounds produced by this microorganism have been associated with various benefits including antimicrobial activity. In this work, we investigated the possible antiviral abilities of two Lb. plantarum strains and their derivatives against CV-B4. The different assays carried out (e.g. pre-incubation, competition and post-infection, using HEp-2 cells as human cell model) suggest that the tested microorganisms and their derivatives have an in vitro inhibiting activity against CV-B4. This is the first report showing the anti-CVB4 activity of Lb. plantarum strains and their derivatives.

  • Multicellular behavior of environmental Escherichia coli isolates grown under nutrient-poor and low-temperature conditions
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-15
    Laura Di Sante, Armanda Pugnaloni, Francesca Biavasco, Eleonora Giovanetti, Carla Vignaroli

    The multicellular behavior designated “red dry and rough” (rdar) morphotype—characterized by production of extracellular matrix mainly comprising curli fimbriae and cellulose—is a potential survival strategy of Escherichia coli outside the host. This study documents the ability of Escherichia cryptic clades, which have recently been recognized as new lineages genetically divergent from E. coli, to grow in unfavorable conditions through expression of distinct phenotypes. Growth under low-temperature and nutrient-poor conditions induced the rdar morphotype in all cryptic clade strains tested, especially after preincubation in broth supplemented with uracil. Such phenotypic response to harsh growth conditions was clearly detected by transmission and scanning electron microscopy, which showed that bacteria were encased in a fibrous matrix. Conversely, cells incubated in rich medium at 37 °C showed no matrix. Uracil enhanced the biosynthesis of matrix components, fostering biofilm production and strain adhesion to abiotic surfaces, as demonstrated by the increase of strong biofilm producers in biofilm assays. Harsh growth conditions also induced catalase activity, resulting in clade strain resistance to hydrogen peroxide oxidative stress. The present findings further support the ‘environmental hypothesis’ whereby cryptic clades would be able to persist in natural habitats outside the host through the expression of distinct survival phenotypes.

  • Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-15
    Badrul Haidar, Mahbuba Ferdous, Babry Fatema, Ahlan Sabah Ferdous, Mohammad Riazul Islam, Haseena Khan

    Endophytes are bacterial or fungal organisms associated with plants in an obligate or facultative manner. In order to maintain a stable symbiosis, many of the endophytes produce compounds that promote plant growth and help them adapt better to the environment. This study was conducted to explore the potential of jute bacterial endophytes for their growth promotion ability in direct and indirect ways. A total of 27 different bacterial species were identified from different varieties of a jute plant (Corchorus olitorius) and different parts of the plant (leaf, root, seed, and seedling) based on 16S rRNA gene sequence. Two of the isolates showed ACC deaminase activity with Staphylococcus pasteuri strain MBL_B3 and Ralstonia solanacearum strain MBL_B6 producing 18.1 and 8.08 μM mg−1 h−1 α-ketobutyrate respectively while eighteen had the ACC deaminase gene (acdS). Fourteen were positive for siderophore activity while Kocuria sp. strain MBL_B19 (133.36 μg/ml) and Bacillus sp. strain MBL_B17 (124.72 μg/ml) showed high IAA production ability. Seven bacterial strains were able to fix nitrogen with only one testing positive for nifH gene. Five isolates exhibited phosphorus utilization ability with Bacillus sp. strain MBL_B17 producing 218.47 μg P/ml. Three bacteria were able to inhibit the growth of a phytopathogen, Macrophomina phaseolina and among them Bacillus subtilis strain MBL_B4 was found to be the most effective, having 82% and 53% of relative inhibition ratio (RIR) and percent growth inhibition (PGI) values respectively. Nine bacteria were tested for their in vivo growth promotion ability and most of these isolates increased seed germination potential and vigour index significantly. Bacillus subtilis strain MBL_B13 showed 26.8% more vigour index than the control in which no bacterial inoculum was used. All inoculants were found to increase the dry weight of jute seedlings in comparison to the control plants and the most increase in fresh weight was found for Staphylococcus saprophyticus strain MBL_B9. Staphylococcus pasteuri strain MBL_B3 exhibited diverse in vitro growth promotion activity and significant growth promoting effect in in vivo pot experiments. These bacterial strains with plant growth enhancing abilities have the potential to be used as bioinoculants.

  • Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-08
    Soumik Mitra, Krishnendu Pramanik, Pallab Ghosh, Tithi Soren, Anumita Sarkar, Ramendra Sundar Dey, Sanjeev Pandey, Tushar Kanti Maiti

    Application of heavy metal resistant plant growth promoting rhizobacteria has an important role as they help to evade metal-induced toxicity in plants on one hand and enhance plant growth on the other. The present study is therefore focused on the characterization of a cadmium resistant bacterial strain isolated from heavy metal contaminated rhizospheric soil designated as S8. This S8 strain was selected in terms of cadmium resistance and plant growth promoting traits. Moreover, it also showed resistance to lead and arsenic to a considerable extent. The selected strain S8 was identified as Klebsiella michiganensis by modern approaches of bacterial taxonomy. The plant growth promoting traits exhibited by the strain include 1-aminocyclopropane-1-carboxylic acid deaminase activity (58.33 ng α-keto butyrate/mg protein/h), Indole-3-acetic acid production (671 μg/ml), phosphate solubilization (71.98 ppm), nitrogen fixation (3.72 μg of nitrogen fixed/h/mg protein) etc. Besides, the strain also exhibited high cadmium removal efficiency (73–97%) from the medium and intracellular accumulation as well. Its efficiency to alleviate cadmium-induced toxicity was determined against a rice cultivar in terms of morphological and biochemical changes. Enhanced growth and reduced oxidative stress were detected in presence of the bacterium. On the basis of these results, it can be concluded that K. michiganensis strain S8 is cadmium accumulating plant growth promoting rhizobacterium that can be applied in cadmium contaminated agricultural soil to achieve better productivity of rice.

  • Roles of phospholipid methyltransferases in pycnidia development, stress tolerance and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspore
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-08
    Oren Akhberdi, Qian Zhang, Haichuan Wang, Yingying Li, Longfei Chen, Dan Wang, Xi Yu, Dongsheng Wei, Xudong Zhu

    Phosphatidylcholine (PC) is an important membrane component of the eukaryotic cell. In yeast fungi, two phospholipid methyltransferases catalyze consecutive steps of methylation in the formation of phosphatidylcholine from phosphatidylethanolamine. However, roles of phospholipid methyltransferases in filamentous fungi remains less investigated. We report here the characterization of two genes, choA and choC, that putatively encoded phospholipid methyltransferases in the taxol-producing fungus Pestalotiopsis microspora. Deletion of choC resulted in defects in PC production, vegetative growth and development of asexual structure. The mutant strains exhibited multiple morphological abnormalities, e.g. swollen hyphal tips and enhanced hyphal branching, and even mycelial autolysis. Some novel roles for the genes were also revealed, for instance, the deletion of either choC or choA impaired the development of pycnidia and conidia, the cell wall integrity. The mutant strains displayed a hypersensitivity to stress conditions, e.g. osmotic stress, cold and metal ions. The osmotic hypersensitivity indicates a crosstalk of PC pathways to other signaling pathways, such as the HOG pathway. Still more, choA, but not choC, was required for the production of secondary metabolites, e.g. pestalotiollide B, suggesting distinct roles of the two genes. This work would contribute to better understanding the function of phospholipid methyltransferases in fungi.

  • The transcription factor-encoding gene crtf is involved in Clonostachys chloroleuca mycoparasitism on Sclerotinia sclerotiorum
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-08
    Zhan-Bin Sun, Qi Wang, Jun Zhang, Wei-Zhi Jiang, Qi Wang, Shi-Dong Li, Gui-Zhen Ma, Man-Hong Sun

    Clonostachys chloroleuca 67-1 (formerly C. rosea 67-1) is a potential biocontrol fungus active against various fungal plant pathogens. From transcriptome sequencing of 67-1 parasitizing sclerotia of Sclerotinia sclerotiorum, we identified the transcription factor-encoding gene crtf that is significantly up-regulated during mycoparasitism. Transcription factors are widely distributed in fungi and involved in multiple biological processes. However, their role and regulatory mechanisms in mycoparasitism remain poorly understood. In this study, the function of crtf during 67-1 mycoparasitism was verified through gene knockout and complementation. The results showed that deletion of crtf did not influence fungal morphological characteristics, but the ability of the Δcrtf mutant to parasitize sclerotia and suppress soybean Sclerotinia white mold in the greenhouse was markedly diminished compared with the wild type strain. The biocontrol activity of Δcrtf recovered wild type levels when complemented with a plasmid expressing the crtf gene. These findings suggest that crtf plays a crucial role in C. chloroleuca mycoparasitism and provide insight into the molecular mechanisms underlying C. chloroleuca mycoparasitism on plant pathogenic fungi.

  • The role of efflux pumps in Bacteroides fragilis resistance to antibiotics
    Microbiol. Res. (IF 3.037) Pub Date : 2018-03-01
    Reza Ghotaslou, Mina Yekani, Mohammad Yousef Memar

    The resistance of Bacteroides fragilis to the most antimicrobial agents has been reported in the world. Identification of the microbial resistance mechanisms can play an important role in controlling these resistances. Currently, B. fragilis is resistant to most antibiotics. The multi-drug efflux pumps have been shown to underlie the antimicrobial resistance in B. fragilis strains. Two types of these efflux pumps including RND and MATE can be regarded as main structures responsible for antibiotic resistance. Therefore, the strategy for suppressing of this efflux system may be useful in the treatment and control of the multidrug-resistant B. fragilis. The purpose of this study is to review the B. fragilis efflux pumps and their functions in the resistance to antibiotics.

  • Phosphorylation of PppA at threonine 253 controls T6SS2 expression and bacterial killing capacity in the marine pathogen Vibrio alginolyticus
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-22
    Zhen Yang, Xuetong Wang, Wensheng Xu, Mian Zhou, Yuanxing Zhang, Yue Ma, Qiyao Wang

    Type VI secretion systems (T6SSs) are multi-protein secretory nano-machines that mediate inter-bacterial competition. Vibrio alginolyticus is an abundant gram-negative marine bacterium that efficiently kills other bacteria with its T6SS2. The V. alginolyticus T6SS2 gene cluster encodes a phosphatase, PppA, and a type II membrane-spanning Hanks-type threonine kinase, PpkA2, which have been implicated in the activation of T6S. Meanwhile, T6SS2 gene expression is under the control of quorum sensing. However, the role of PppA in T6SS2 activity is unclear. Here, our phosphoproteomic screen identified PppA as a novel PpkA2 substrate. Phosphorylation at threonine 253 (T253) of PppA is not conserved in other bacteria, suggesting that PppA may play a unique role in T6SS2 activation in V. alginolyticus. Interestingly, PppA phosphatase activity was modulated by the cognate kinase PpkA2, which implied that a homeostasis is required for optimal T6S activity. PppA and phosphorylation of PppA at T253 are important for T6S activity and T6SS2-mediated bacterial killing. Moreover, PppA and the phosphorylation of PppA are also essential for the expression of LuxR, the master regulator of quorum sensing, thus augmenting T6SS2 expression. Collectively, our data demonstrated that phosphorylation of PppA at T253 controls the activity of T6SS2, thereby enhancing the competitive fitness of V. alginolyticus.

  • Antidiabetic “gliptins” affect biofilm formation by Streptococcus mutans
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-19
    Arpan De, Arianna Pompilio, Jenifer Francis, Iain C. Sutcliffe, Gary W. Black, Giulio Lupidi, Dezemona Petrelli, Luca A. Vitali

    Streptococcus mutans, a dental caries causing odontopathogen, produces X-prolyl dipeptidyl peptidase (Sm-XPDAP, encoded by pepX), a serine protease known to have a nutritional role. Considering the potential of proteases as therapeutic targets in pathogens, this study was primarily aimed at investigating the role of Sm-XPDAP in contributing to virulence-related traits. Dipeptidyl peptidase (DPP IV), an XPDAP analogous enzyme found in mammalian tissues,is a well known therapeutic target in Type II diabetes. Based on the hypothesis that gliptins, commonly used as anti-human-DPP IV drugs, may affect bacterial growth upon inhibition of Sm-XPDAP, we have determined their ex vivo antimicrobial and anti-biofilm activity towards S. mutans. All three DPP IV drugs tested reduced biofilm formation as determined by crystal violet staining. To link the observed biofilm inhibition to the human-DPP IV analogue present in S. mutans UA159, a pepX isogenic mutant was generated. In addition to reduced biofilm formation, CLSM studies of the biofilm formed by the pepX isogenic mutant showed these were comparable to those formed in the presence of saxagliptin, suggesting a probable role of this enzyme in biofilm formation by S. mutans UA159. The effects of both pepX deletion and DPP IV drugs on the proteome were studied using LC-MS/MS. Overall, this study highlights the potential of Sm-XPDAP as a novel anti-biofilm target and suggests a template molecule to synthesize lead compounds effective against this enzyme.

  • Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-19
    Rui Liu, Xue Zhang, Ang Ren, Deng-Ke Shi, Liang Shi, Jing Zhu, Han-Shou Yu, Ming-Wen Zhao

    Heat stress (HS) is an important environmental factor that affects the growth and metabolism of edible fungi, but the molecular mechanism of the heat stress response (HSR) remains unclear. We previously reported that HS treatment increased the length between two hyphal branches and induced the accumulation of ganoderic acid biosynthesis and the gene expression of heat shock proteins (HSPs) in Ganoderma lucidum. In this study, we found that HS induced a significant increase in the cytosolic ROS concentration, and exogenously added ROS scavengers NAC, VC and NADPH oxidase (Nox) inhibitor DPI reduce the cytosolic ROS accumulation in G. lucidum. In addition, the phenomena of the increased gene expression and increased length between the two hyphal branches and the accumulation of GA biosynthesis induced by HS were mitigated. Furthermore, we investigated the effects of HS on Nox-silenced strains (NoxABi-10, NoxABi-11 and NoxRi-4, NoxRi-7) and found that the level of ROS concentration was lower than that in wild-type (WT) strains treated with HS. Additionally, Nox silenced strains reduced the HS-induced increase in HSP expression, the length between two hyphal branches and GA biosynthesis compared with the WT strain. These data indicate that HS-induced ROS participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in G. lucidum. In addition, these findings identified potential pathways linking ROS networks to HSR, physiological and metabolic processes in fungi and provide a valuable reference for studying the role of ROS in HSR, mycelium growth and secondary metabolites.

  • Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-15
    Ambrin Sarwar, Muhammad Nadeem Hassan, Muhammad Imran, Mazhar Iqbal, Saima Majeed, Günter Brader, Angela Sessitsch, Fauzia Yusuf Hafeez

    The potential of the Bacillus genus to antagonize phytopathogens is associated with the production of cyclic lipopeptides. Depending upon the type of lipopeptide, they may serve as biocontrol agents that are eco-friendly alternatives to chemical fertilizers. This study evaluates the biocontrol activity of surfactin-producing Bacillus (SPB) strains NH-100 and NH-217 and purified surfactin A from these strains against rice bakanae disease. Biologically active surfactin fractions were purified by HPLC, and surfactin A variants with chain lengths from C12 to C16 were confirmed by LCMS-ESI. In hemolytic assays, a positive correlation between surfactin A production and halo zone formation was observed. The purified surfactin A had strong antifungal activity against Fusarium oxysporum, F. moniliforme, F. solani, Trichoderma atroviride and T. reesei. Maximum fungal growth suppression (84%) was recorded at 2000 ppm against F. moniliforme. Surfactin A retained antifungal activity at different pH levels (5–9) and temperatures (20, 50 and 121 °C). Hydroponic and pot experiments were conducted to determine the biocontrol activity of SPB strains and the purified surfactin A from these strains on Super Basmati rice. Surfactin production in the rice rhizosphere was detected by LCMS-ESI at early growth stages in hydroponics experiments inoculated with SPB strains. However, the maximum yield was observed with a consortium of SPB strains (T4) and purified surfactin A (T5) treatments in the pot experiment. The outcomes of the present study revealed that surfactin A significantly reduced rice bakanae disease by up to 80%. These findings suggest that purified surfactin A could be an effective biocontrol agent against bakanae disease in rice and should be incorporated into strategies for disease management.

  • Plant Growth Promoting Bacteria as an Alternative Strategy for Salt Tolerance in Plants: A Review
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-13
    Muhammad Numan, Samina Bashir, Yasmin Khan, Roqayya Mumtaz, Zabta Khan Shinwari, Abdul Latif Khan, Ajmal Khan, Ahmed AL-Harrasi
  • Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-13
    Bożena Bruhn-Olszewska, Paweł Szczepaniak, Ewelina Matuszewska, Dorota Kuczyńska-Wiśnik, Karolina Stojowska-Swędrzyńska, María Moruno Algara, Ewa Laskowska

    Bacteria can form heterogeneous populations containing phenotypic variants of genetically identical cells. The heterogeneity of populations can be considered a bet-hedging strategy allowing adaptation to unknown environmental changes – at least some individual subpopulations or cells might be able to withstand future adverse conditions. Using Percoll gradient centrifugation, we demonstrated that in an Escherichia coli culture exposed to heat shock at 50 °C, two physiologically distinct subpopulations were formed. A high-density subpopulation (HD50) demonstrated continued growth immediately after its transfer to LB medium, whereas the growth of a low-density subpopulation (LD50) was considerably postponed. The LD50 subpopulation contained mainly viable but non-culturable bacteria and exhibited higher tolerance to sublethal concentrations of antibiotics or H2O2 than HD50 cells. The levels of aggregated proteins and main molecular chaperones were comparable in both subpopulations; however, a decreased number of ribosomes and a significant increase in protein oxidation were observed in the LD50 subpopulation as compared with the HD50 subpopulation. Interestingly, under anaerobic heat stress, the formation of the HD50 subpopulation was decreased and culturability of the LD50 subpopulation was significantly increased. In both subpopulations the level of protein aggregates formed under anaerobic and aerobic heat stress was comparable. We concluded that the formation of protein aggregates was independent of oxidative damage induced by heat stress, and that oxidative stress and not protein aggregation limited growth and caused loss of LD50 culturability. Our results indicate that heat stress induces the formation of distinct subpopulations differing in their ability to grow under standard and stress conditions.

  • Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-06
    Can Chen, Yaoling Zhang, Lei Xu, Kaixiang Zhu, Yanyan Feng, Junfeng Pan, Meiru Si, Lei Zhang, Xihui Shen

    Corynebacterium glutamicum can degrade phenol by a meta-cleavage pathway, which depends on ncgl2588 (phe) of the phe operon encoding phenol hydroxylase. An additional gene, ncgl2587 (pheR), is located upstream of phe. The pheR encodes an AraC/XylR-type regulator protein with 377 amino acid residues and is transcribed in the same direction as phe. Disruption of pheR by homologous recombination resulteds in the accumulation of phenol degradation in C. glutamicum. PheR demonstrates a low type of constitutive expression where phenol induces phe expression. PheR shares 75% sequence identity with AraC-type regulator of Corynebacterium lubricantis and 37 conserved residues, characteristic of AraC family, were located. A constructed pK18mobsacB-Pphe:lacZ transcriptional fusion plasmid was transformed into the wild-type, ΔpheR, and ΔpheR+ strains, and the results indicated that PheR activates the expression of phe encoding phenol hydroxylase. Electrophoretic mobility shift assay (EMSA) demonstrated a direct interaction of PheR with the phe promoter region and binding site of PheR on the Pphe was located 109-bp upstream of phe, as indicated by foot printing analysis. Our research provides deep insight into PheR expression and its regulatory function on Phe in C. glutamicum.

  • Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-03
    Sonia Salazar-Cerezo, Nancy Martínez-Montiel, Jenny García-Sánchez, Rocío Pérez-y-Terrón, Rebeca D. Martínez-Contreras

    Gibberellins (GAs) are natural complex biomolecules initially identified as secondary metabolites in the fungus Gibberella fujikuroi with strong implications in plant physiology. GAs have been identified in different fungal and bacterial species, in some cases related to virulence, but the full understanding of the role of these metabolites in the different organisms would need additional investigation. In this review, we summarize the current evidence regarding a common pathway for GA synthesis in fungi, bacteria and plant from the genes depicted as part of the GA production cluster to the enzymes responsible for the catalytic transformations and the biosynthetical routes involved. Moreover, we present the relationship between these observations and the biotechnological applications of GAs in plants, which has shown an enormous commercial impact.

  • Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-02
    Fatemeh Izadpanah, Ahmad Homaei, Pedro Fernandes, Sedigheh Javadpour

    The marine environment is a rich source of biological and chemical diversity. It covers more than 70% of the Earth’s surface and features a wide diversity of habitats, often displaying extreme conditions, where marine organisms thrive, offering a vast pool for microorganisms and enzymes. Given the dissimilarity between marine and terrestrial habitats, enzymes and microorganisms, either novel or with different and appealing features as compared to terrestrial counterparts, may be identified and isolated. L-asparaginase (E.C., is among the relevant enzymes that can be obtained from marine sources. This amidohydrolase acts on L-asparagine and produce L-aspartate and ammonia, accordingly it has an acknowledged chemotherapeutic application, namely in acute lymphoblastic leukemia. Moreover, L-asparaginase is also of interest in the food industry as it prevents acrylamide formation. Terrestrial organisms have been largely tapped for L-asparaginases, but most failed to comply with criteria for practical applications, whereas marine sources have only been marginally screened. This work provides an overview on the relevant features of this enzyme and the framework for its application, with a clear emphasis on the use of L-asparaginase from marine sources. The review envisages to highlight the unique properties of marine L-asparaginases that could make them good candidates for medical applications and industries, especially in food safety.

  • Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana)
    Microbiol. Res. (IF 3.037) Pub Date : 2018-02-02
    Lizeth Guardado Valdivia, Erik Tovar Pérez, Alejandra Chacón López, Ulises López García, Porfirio Gutiérrez Martínez, Selene Aguilera

    Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous fruit, including soursop and avocado. The use of fungicides to maintain the high quality of fruit creates a potential health risk. One alternative to this problem is the biological control, which has been applied successfully during postharvest. The Bacillus species are one of the most studied biological agents against postharvest pathogens because accomplish their biocontrol performance by producing a variety of metabolites. In this study, we evaluated the activity of metabolites contained in the cell free supernatant, obtained from Bacillus strain B5 culture, against micelial growth and spore germination of two virulent strains of C. gloeosporioides isolated from soursop and avocado. On the basis of 16S rDNA gene sequence analysis, this strain was identified as Bacillus atrophaeus. A preventive treatment using cell free supernatant, reduced severity and incidence of anthracnose disease on harvested soursop and avocado fruit. B. atrophaeus strain B5 harbors genes involved in the production of antibiotics such as surfactin, bacillomycin and iturin, which could be contributing to the efficiency of the preventive treatment during postharvest. The antagonistic role of metabolites contained in the cell free supernatant against anthracnose disease, provide a new approach by which to attack this problem and can help reduce the use of chemical pesticides, environmental pollution, leading to the safer fruit preservation.

  • Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-31
    Ma del Carmen Orozco-Mosqueda, Ma del Carmen Rocha-Granados, Bernard R. Glick, Gustavo Santoyo

    A plant microbiome includes a microbial community that typically interacts extensively with a plant. The plant microbiome can survive either inside or outside of plant tissues, performing various plant beneficial activities including biocontrol of potential phytopathogens and promotion of plant growth. An important part of the plant microbiome includes plant growth-promoting bacteria (PGPB) that commonly reside in the rhizosphere and phyllosphere, and as endophytic bacteria (inside of plant tissues). As new plant microbiome-manipulating strategies have emerged in recent years, we have critically reviewed relevant literature, chiefly from the last decade. We have analysed and compared the rhizosphere, phyllosphere and endosphere as potential ecosystems for manipulation, in order to improve positive interactions with the plant. In addition, many studies on the bioengineering of the endophyte microbiome and its potential impact on the core microbiome were analysed with respect to five different strategies, including host mediated and multi-generation microbiome selection, inoculation into soil and rhizosphere, inoculations into seeds or seedlings, tissue atomisation and direct injection into tissues or wounds. Finally, microbiome engineering presents a feasible strategy to solve multiple agriculture-associated problems in an eco-friendly way.

  • Microbial volatiles as plant growth inducers
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-31
    Paola Fincheira, Andrés Quiroz

    Agricultural practices require novel products that allow sustainable development and commercial production according to the needs of farmers and consumers. Therefore, in the last decade, eco-friendly alternatives have been studied, so volatile organic compounds (VOCs) emitted by microorganisms have emerged as a cheaper, effective, efficient, and an eco-friendly alternative. VOCs are lipophilic compounds derived from microbial metabolic pathways with low molecular weight (< 300 g mol−1), low boiling point, and high vapor pressure that allow them to act as signal molecules over short and long distances. Main case studies provide evidence that VOCs released from diverse microorganisms (i.e. Bacillus, Pseudomonas, Arthrobacter, Fusarium, and Alternaria) can stimulate growth on a specific “target” seedling, such as Arabidopsis and tobacco. Some identified compounds, such as 3-hydroxy-2-butanone (acetoin), 2,3-butanediol, 2-pentylfuran, or dimethylhexadecylmine have shown their ability to elicit growth at root or leaf level. Few studies indicate that VOCs act in the regulation at phytohormone, metabolic pathways and nutrition levels according to genetic, proteomic, and metabolic analyses; but action mechanisms associated with growth-inducing activity are poorly understood. In this work, we reviewed case studies regarding identified compounds and action mechanisms for a better understanding of the information collected so far. Additionally, a brief description about the effects of VOCs for induction of resistance and tolerance in plants are presented, where compounds such as acetoin, dimethyl disulfide, 3-pentanol and 6-pentyl-α-pyrone have been reported. Furthermore, we summarized the knowledge to direct future studies that propose microbial VOCs as a technological innovation in agriculture and horticulture.

  • Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-31
    Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban

    Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13–60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes. Biodegradation tests of organic compounds such as lactate, acetate, formate, propionate and oxalate that are present in cryoconite hole water show that microbes have good potential to metabolize the compounds tested. Substrate utilization tests on Biolog Ecoplate show that microbial communities in the Himalayan samples are able to oxidize a diverse array of organic substrates including carbohydrates, carboxylic acids, amino acids, amines/amides and polymers, while Antarctic communities generally utilized complex polymers. In addition, as determined by the extracellular enzyme activities, majority of the microbes (82%, total of 355) isolated in this study (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Basidiomycota) had ability to degrade a variety of compounds such as proteins, lipids, carbohydrates, cellulose and lignin that are documented to be present within cryoconite holes. Thus, microbial communities have good potential to metabolize organic compounds found in the cryoconite hole environment, thereby influencing the water chemistry in these holes. Moreover, microbes exported downstream during melting and flushing of cryoconite holes may participate in carbon cycling processes in recipient ecosystems.

  • Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions—Bio control effects on blast disease suppression on rice crop
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-31
    Afroz Rais, Muhammad Shakeel, Kamran Malik, Fauzia Yusuf Hafeez, Humaira Yasmin, Saqib Mumtaz, Muhammad Nadeem Hassan

    Rice blast is a severe threat for agricultural production. Plant growth promoting rhizobacteria could be suitable biocontrol agents to reduce the disease incidence. In this study, Bacillus spp. KFP-5, KFP-7, KFP-17 significantly reduced disease severity by 40–52% with grain yield of 3.2–3.9 ton ha−1 in two rice varieties i.e., basmati super and basmati 385. Bacillus spp. significantly colonized the rice rhizosphere with a cell population of 2.40E+06–5.6E+07CFU. Rice plants treated with antagonistic bacterial suspension followed by challenge inoculation with P. oryzae were found to have higher activities of antioxidant enzymes such as superoxide dismutase (308–266 Ug−1 FW), peroxidase (change in absorbance (ΔA) = 0.20–0.71 min−1 g−1 FW), polyphenol oxidase (ΔA = 0.29–0.58 min−1 g−1 FW) and phenylalanine ammonia lyase (ΔA = 0.32–0.59 min−1 g−1 FW). A consistency in the performance of strains was observed in the consecutive years 2013–2014. These findings suggest that indigenous Bacillus spp. could be a potential bio-inoculum for rice to control blast diseases and enhance yield.

  • Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-11
    Dandan Han, Lanying Wang, Yanping Luo

    Actinomycetes are an important group of gram-positive bacteria that play an essential role in the rhizosphere ecosystem. The confrontation culture and Oxford cup method were used to evaluate the antagonistic activities of strains, which were isolated from the rhizosphere soil of Mikania micrantha. The two isolates were identified using morphological and physiological tests combined with 16S rRNA-based molecular analysis, respectively. The type I polyketone synthase (PKS-I) was amplified. The constituents of fermentation metabolites were analyzed by gas chromatography mass spectrometry. The plant growth promoting effect was determined. Finally, the growth of wheat seedlings was assessed using the Petri dish method. Overall, of the isolated twelve strains, WZS1-1 and WZS2-1 could significantly inhibit target fungi. Isolate WZS1-1 was identified as Streptomyces rochei, and WZS2-1 was identified as Streptomyces sundarbansensis. In particular, Fusarium graminearum (FG) from wheat was inhibited by more than 80%, and the inhibitory bandwidths against FG were 31 ± 0.3 mm and 19 ± 0.5 mm, respectively. The genes PKS-I were successfully amplified, confirming that these strains are capable of producing biosynthetic secondary metabolites. Major component analysis revealed aliphatic ketones, carboxylic acids, and esters, with n-hexadecanoic acid being the most abundant compound. Plant growth promoting test indicated that both strains produced IAA, presented with orange loops on CAS plates, dissolved phosphorus and potassium, fixed nitrogen, but did not generate organic acids; both strains colonized in soil, while only WZS1-1 colonized in wheat roots. Additionally, the fermentation broth significantly promoted the growth of wheat.

  • Interdependence of bacterial cell division and genome segregation and its potential in drug development
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-05
    Hari S. Misra, Ganesh K. Maurya, Reema Chaudhary, Chitra S. Misra

    Cell division and genome segregation are mutually interdependent processes, which are tightly linked with bacterial multiplication. Mechanisms underlying cell division and the cellular machinery involved are largely conserved across bacteria. Segregation of genome elements on the other hand, follows different pathways depending upon its type and the functional components encoded on these elements. Small molecules, that are known to inhibit cell division and/or resolution of intertwined circular chromosome and maintenace of DNA topology have earlier been tested as antibacterial agents. The utility of such drugs in controlling bacterial infections has witnessed only partial success, possibly due to functional redundancy associated with targeted components. However, in due course, literature has grown with newer information. This review has brought forth some recent findings on bacterial cell division with special emphasis on crosstalk between cell division and genome segregation that could be explored as novel targets in drug development.

  • Functional analysis of an APSES transcription factor (GlSwi6) involved in fungal growth, fruiting body development and ganoderic-acid biosynthesis in Ganoderma lucidum
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-04
    Guang Zhang, Ang Ren, Liang Shi, Jing Zhu, Ailiang Jiang, Dengke Shi, Mingwen Zhao

    The APSES transcription factors have been identified as key regulators of fungal development and other biological processes in fungi. In the present study, the function of Ganoderma lucidum GlSwi6, a homolog of Saccharomyces cerevisiae Swi6, was characterized. RNAi was used to examine the function of GlSwi6 in G. lucidum. Silencing GlSwi6 resulted in multiple developmental defects, including reduced fungal growth and increased hyphal branching, and the GlSwi6-silenced strains did not exhibit primordium or fruiting body formation. In addition, the H2O2 and ganoderic-acid (GA) levels of the GlSwi6-silenced strains decreased approximately 50% and 25%, respectively, compared with those of the WT strain. Furthermore, the addition of H2O2 led to the recovery of the GA levels of GlSwi6-silenced strains, implying that GlSwi6 might regulate GA biosynthesis by regulating the intracellular ROS levels. Taken together, these results indicate that GlSwi6 is involved in fungal growth, development and GA biosynthesis in G. lucidum.

  • Diversity and Bioprospecting of Extremely Halophilic Archaea isolated from Algerian Arid and Semi-Arid Wetland Ecosystems for Halophilic-Active Hydrolytic Enzymes
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-04
    Taha Menasria, Margarita Aguilera, Hacène Hocine, Leyla Benammar, Ammar Ayachi, Abdelkrim Si Bachir, Ahmed Dekak, Mercedes Monteoliva-Sánchez

    The diversity of haloarchaea associated with different dry salt lakes in northeastern Algeria was investigated together with their potential of hydrolytic enzyme production. A total of 68 aerobic halophilic archaea were isolated from saline sediments. Based on the 16S rRNA gene sequencing, the isolates were assigned to seven phylotypes within the class Halobacteria sequences, namely Haloarcula, Halococcus, Haloferax, Halogeometricum, Haloterrigena, Natrialba, and Natrinema. The results showed that Haloferax group was found to be dominant in all samples (30 isolates) (44%) with high diversity, followed by Halococcus spp. (13%) (9 isolates). All phylotypes are extreme halophiles and thermotolerant with the ability to grow at temperatures up to 48 °C. In addition, the screening for extracellular halophilic enzymes showed that 89.7% of the isolates were able to produce at least two types of the screened enzymes respectively. The strains producing esterase, gelatinase, inulinase, cellulase and protease activities were the most diverse functional group. These data showed an abundant and diverse haloarchaeal community, detected in Algerian wetland ecosystems, presenting a promising source of molecules with important biotechnological applications.

  • Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-03
    M. Rath, T.R. Mitchell, S.E. Gold

    Volatile organic compounds (VOCs) produced by Plant Growth Promoting Rhizobacteria have recently been investigated due to their role in plant growth promotion and defense. Whereas some bacterial VOCs like 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol produced by strains of Bacillus subtilis and Bacillus amyloliquefaciens promote plant growth, others like hydrogen cyanide and 3-phenylpropionic acid are phytotoxic, inhibiting plant growth. Bacillus mojavensis, a close relative of B. subtilis, is an endophytic bacterium of maize that has been shown to have antagonistic activity against the mycotoxigenic phytopathogen Fusarium verticillioides and growth promotion activity on maize seedlings. To investigate the growth promotion activity of B. mojavensis, Arabidopsis thaliana seedlings were grown on 1/2x Murashige & Skoog (MS) medium in divided Petri dishes while bacteria were grown either on 1/2x MS or nutrient agar (NA) medium, so that only microbial volatiles reached the seedlings. Significant plant growth promotion in Arabidopsis seedlings was observed when 1/2x MS medium was used for bacterial growth. In contrast, phytotoxicity was observed with bacterial growth on NA medium. These results indicate that VOCs produced by B. mojavensis may act as plant growth modulators rather than just promoters. Using Solid Phase Microextraction (SPME) coupled with GC–MS, the plant growth promoting compounds acetoin and 2, 3-butanediol were both identified as being produced by B. mojavensis on growth promoting 1/2x MS medium. In contrast, while no phytotoxic VOC was conclusively identified from B. mojavensis on NA medium, detection of relatively high levels of acetone/2-propanone indicates its possible contribution to Arabidopsis phytotoxicity.

  • Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-03
    Ananya Barman, Dibakar Gohain, Utpal Bora, Ranjan Tamuli

    Phospholipases are ubiquitous enzymes that hydrolyze phospholipids. Based on the cleavage site of the ester linkage in the substrate phospholipids, phospholipases are classified into four major types phospholipase A (PLA), phospholipase B (PLB), phospholipase C (PLC), and phospholipase D (PLD), which are further classified into various subtypes. Phospholipases hydrolyze phospholipids into various signaling products including phosphatidic acid (PA), diacylglycerol (DAG), free fatty acids (FFAs), and lyso-phospholipids (LPLs). These signaling products regulate numerous processes such as cytoskeletal dynamics, growth, homeostasis, membrane remodeling, nutrient acquisition, secretion, signal transduction, stress tolerance, sexual development, and virulence in various organisms including fungi. Due to these key cellular roles, phospholipases are also promising targets in diagnostic and therapeutic applications. In this review, we discuss current knowledge about the cellular roles of different classes of phospholipases in fungi.

  • Genetic manipulation of Fonsecaea pedrosoi using particles bombardment and Agrobacterium mediated transformation
    Microbiol. Res. (IF 3.037) Pub Date : 2018-01-02
    Camille Silva Florencio, Fabiana Alves Silva Brandão, Marcus de Mello Teixeira, Anamélia Lorenzetti Bocca, Maria Sueli S. Felipe, Vânia Aparecida Vicente, Larissa Fernandes

    Fonsecaea pedrosoi, a melanized fungal pathogen that causes Chromoblastomycosis, a human disease with a worldwide distribution. Biolistic is a widely used technique for direct delivery of genetic material into intact cells by particles bombardment. Another well-established transformation method is Agrobacterium-mediated transformation (ATMT), which involves the transfer of a T-DNA from the bacterium to the target cells. In F. pedrosoi there are no reports of established protocols for genetic transformation, which require optimization of physical and biological parameters. In this work, intact conidia of F. pedrosoi were particle bombarded and subjected to ATMT. In addition, we proposed Hygromycin B, Nourseothricin and Neomycin as dominant selective markers for F. pedrosoi and vectors were constructed. We tested two parameters for biolistic: the distance of the particles to the target cells and time of cells recovery in nonselective medium. The biolistic efficiency was 37 transformants/μg of pFpHYG, and 45 transformants/μg of pAN7.1. Transformants expressing GFP were successfully obtained by biolistic. A co-culture ratio of 10: 1 (bacterium: conidia) and co-incubation time of 72 hours yielded the largest number of transformants after ATMT. Southern blot analysis showed the number of foreign DNA insertion into the genome is dependent upon the plasmid used to generate the mutants. This work describes for the first time two efficient methods for genetic modification of Fonsecaea and these results open new avenues to better understand the biology and pathogenicity of the main causal agent of this neglected disease.

  • Rapid screening of starter cultures for maari based on antifungal properties
    Microbiol. Res. (IF 3.037) Pub Date : 2017-11-11
    Donatien Kaboré, Mérilie Gagnon, Denis Roy, Hagrétou Sawadogo-Lingani, Bréhima Diawara, Gisèle LaPointe

    Forty Bacillus isolates obtained from maari (used as condiment in Burkina Faso) including 17 B. subtilis, 4 B. circulans, 7 B. pumilus and 6 B. licheniformis were investigated for use as starter cultures in maari production. The isolates were screened by PCR for the sfp gene responsible for the production of the lipopeptide biosurfactant, surfactin. The sfp gene was detected in all of the seventeen B. subtilis isolates, in 2 out of 7 B. pumilus, in 4 out of 6 B. licheniformis whereas no B. circulans was positive for the sfp gene by PCR screening. Furthermore, all the 40 Bacillus spp. were screened for biosurfactant production and inhibitory activity against Aspergillus flavus, A. niger, A. versicolor and Rhizopus oryzae. Results demonstrated a relationship between the presence of the sfp gene and the antifungal activity and biosurfactant production of Bacillus isolates. In addition, molecular typing of the 17 B. subtilis isolates by Multilocus Sequence Typing (MLST) resulted in 15 Sequence Types, one of them included three strains. Randomly Amplified Polymorphic DNA-PCR (RAPD-PCR), used for B. licheniformis, B. megaterium, B. circulans and B. pumilus revealed that the inhibitory activity and biosurfactant production were strain-dependent. Finally, the detection of chitinase (chi) and β-glucanase (glu) biosynthesis genes was found to be associated with the antifungal activity for 16 B. subtilis isolates. The present work provides a greater understanding of the antifungal activity and biosurfactant production ability within the Bacillus spp. isolated from maari and contributes to the selection of Bacillus isolates to be used as starter cultures for controlled production of maari.

  • DNA sequence-specific dimeric bisbenzimidazoles DBP(n) and DBPA(n) as inhibitors of H-NS silencing in bacterial cells
    Microbiol. Res. (IF 3.037) Pub Date : 2017-11-14
    Olga E. Melkina, Vasilii S. Koval, Alexander A. Ivanov, Alexei L. Zhuze, Gennadii B. Zavilgelsky

    DNA sequence-specific fluorescent dimeric bisbenzimidazoles DBP(n) and DBPA(n), noncovalently interacting with A-T pairs in the minor groove of double-stranded DNA were used for studying and monitoring the expression of histone-like H-NS-dependent promoters. Histone-like H-NS selectively binds to AT-rich segments of DNA and silences a large number of genes in bacterial chromosomes. The H-NS-dependent promoters of Quorum Sensing (QS)-regulated lux operons of the marine bacteria mesophilic Aliivibrio fischeri, psychrophilic Aliivibrio logei were used. Escherichia coli lux biosensors were constructed by cloning fragments bearing QS-regulated promoters into the vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE genes. It was shown that the dimeric bisbenzimidazoles DBP(n) and DBPA(n) counteract the H-NS silencing activity. Thus, the presence of DBP(n) or DBPA(n) in the medium leads to an approximately 10–100-fold increase in the level of transcription of QS promoters in E. coli hns+. The largest decrease in the level of H-NS repression was observed using ligands containing a linker with a length of ca. 18 Å, such as DBP(2) and DBPA(2). Ligands containing linkers with n = 1 and 3 are an order of magnitude less active; ligands with n = 4 are inactive. DBPA(2) exhibits activity starting with a concentration of 0.5 μM; the minimum concentration of DBP(2) is 5–7 times higher. It is suggested that A-T pairs located at five nucleotide pair intervals, which correspond to the linker length in highly active ligands with n = 2, play a key role in the structure of H-NS-binding sites in QS-regulated promoters.

  • Desert actinobacteria as a source of bioactive compounds production with a special emphases on Pyridine-2,5-diacetamide a new pyridine alkaloid produced by Streptomyces sp. DA3-7
    Microbiol. Res. (IF 3.037) Pub Date : 2017-11-21
    Krishnasamy Nithya, Chinnasamy Muthukumar, Bhaskar Biswas, Naiyf S. Alharbi, Shine Kadaikunnan, Jamal M. Khaled, Dharumadurai Dhanasekaran

    In the present study, 134 morphologically distinct actinobacteria isolates were obtained from soil samples from 10 different localities in the Saudi Arabian desert. The preliminary screening revealed that 16 of these isolates possessed antimicrobial activity. One isolate, which was identified as Streptomyces sp. DA3-7, possessed broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria, as well as against fungi, and modified nutrient glucose medium was suitable for Streptomyces sp. DA3-7 to produce extracellular metabolites. The ethyl acetate extract of Streptomyces sp. DA3-7 exhibited antimicrobial activity against Enterococcus faecalis and Salmonella typhimurium, with minimum inhibitory concentrations of 78 and 156 μg/mL, respectively, as well as strong cytotoxicity (24 h IC50 85 μg/mL) against MCF-7 human breast adenocarcinoma cells. The active compound was separated, purified, and identified as Pyridine-2,5-diacetamide (C9H11N3O2 + H+, 194.21), which possessed a lowest minimum inhibitory concentration (31.25 μg/mL) against both Escherichia coli and Cryptococcus neoformans. The antimicrobial activities of this novel compound are reported here for the first time.

  • Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae
    Microbiol. Res. (IF 3.037) Pub Date : 2017-12-01
    C.M. Senthil Kumar, T.K. Jacob, S. Devasahayam, Stephy Thomas, C. Geethu
  • For the greater good: Programmed cell death in bacterial communities
    Microbiol. Res. (IF 3.037) Pub Date : 2017-12-01
    Stijn H. Peeters, Marien I. de Jonge
  • Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis
    Microbiol. Res. (IF 3.037) Pub Date : 2017-11-14
    Wanquan Liu, Meifang Tan, Chunyan Zhang, Zhuofei Xu, Lu Li, Rui Zhou

    Spermidine (Spd), spermine (Spm), and putrescine (Put), which are the most widely distributed cellular polyamines, are essential for normal growth and multiplication of both eukaryotic and prokaryotic cells. In this study, we identified the only putative polyamine transport system PotABCD in Streptococcus suis, a worldwide zoonotic Gram-positive pathogen causing lethal infections in humans and pigs. It was discovered that S. suis could uptake polyamines preferably Spd and Spm. By constructing a potA deleted mutant, we confirmed that PotABCD was responsible for polyamine uptake, and PotD bound to the protein of polyamines. The four PotABCD genes were co-transcribed with murB, a gene involved in peptidoglycan (PG) synthesis. Furthermore the roles of polyamine transport system in maintaining the PG structure were detected to understand the biological significance of this co-transcription. In contrast to the wild type, the mutant ΔpotA exhibited elongated chain length and abnormal cell division morphology. Phenotypic changes were attributed to be the up-regulation of genes involved in PG synthesis and hydrolysis in ΔpotA. Additionally, polyamines functioned not only as feedback regulators of PotA by inhibiting PotA activity but also as regulators on potABCD and genes involved in PG synthesis. This study reveals the functions of PotABCD in polyamine transport and the regulatory roles of polyamines in PG synthesis. Results provide new insights into the machineries contributing to normal growth and cell division of S. suis.

Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
化学 • 材料 期刊列表