当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metallic glass nanotube arrays: Preparation and surface characterizations
Materials Today ( IF 24.2 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.mattod.2017.10.007
Jem-Kun Chen , Wei-Ting Chen , Chih-Chia Cheng , Chia-Chi Yu , Jinn P. Chu

Abstract In this study, we fabricated first-ever metallic glass nanotubes (MGNTs) in a distinct pattern on a Si substrate, by sputter-depositing a coating of metallic glass (Zr55Cu30Al10Ni5) over a contact-hole array template created in photoresist. The resulting nanotubes were 500 or 750 nm in height with a diameter of 500 or 750 nm and wall thickness ranging from 44 nm to 103 nm. The structure of the nanotubes was preserved by the high strength and ductility of the metallic glass during the removal of the photoresist template under ultrasonic vibration. We observed an increase in the hydrophobicity of the MGNT with an increase in the thickness of the walls, with the thickest walls presenting an apparent contact angle of 139°. The hydrophobicity is due to air trapped within the tubes, which prevents the intrusion of water into the nanostructures. We also observed thermal-response behavior on the surface of the MGNT array. Surface cooling produced negative pressure within the nanochambers, which created a sucking force against the water droplets. Surface heating produced positive pressure within the nanochambers, which actually lifted the droplets. This thermal-response behavior was shown to be reversible for at least five cycles between 25 and 55 °C. The MGNT created adhesion forces reaching 14.2 N cm−2, which was sufficient to secure the water droplets even when the surface was tilted or completely inverted. The MGNT array in this study represents a biomimetic analog with switchable contact interface, the behavior of which can be controlled simply by altering the surface temperature.

中文翻译:

金属玻璃纳米管阵列:制备和表面表征

摘要 在这项研究中,我们通过在光刻胶中创建的接触孔阵列模板上溅射沉积金属玻璃 (Zr55Cu30Al10Ni5) 涂层,在 Si 衬底上以独特的图案制造了首个金属玻璃纳米管 (MGNT)。所得纳米管的高度为 500 或 750 nm,直径为 500 或 750 nm,壁厚范围为 44 nm 至 103 nm。在超声波振动下去除光刻胶模板期间,金属玻璃的高强度和延展性保留了纳米管的结构。我们观察到 MGNT 的疏水性随着壁厚的增加而增加,最厚的壁呈现 139° 的表观接触角。疏水性是由于管内截留了空气,可防止水侵入纳米结构。我们还观察到 MGNT 阵列表面的热响应行为。表面冷却在纳米室内产生负压,从而对水滴产生吸力。表面加热在纳米室内产生正压,这实际上提升了液滴。这种热响应行为在 25 到 55 °C 之间的至少五个循环中显示是可逆的。MGNT 产生的粘附力达到 14.2 N cm-2,即使表面倾斜或完全倒置也足以固定水滴。本研究中的 MGNT 阵列代表具有可切换接触界面的仿生类似物,其行为可以通过改变表面温度来简单控制。表面冷却在纳米室内产生负压,从而对水滴产生吸力。表面加热在纳米室内产生正压,这实际上提升了液滴。这种热响应行为在 25 到 55 °C 之间的至少五个循环中显示是可逆的。MGNT 产生的粘附力达到 14.2 N cm-2,即使表面倾斜或完全倒置也足以固定水滴。本研究中的 MGNT 阵列代表具有可切换接触界面的仿生类似物,其行为可以通过改变表面温度来简单控制。表面冷却在纳米室内产生负压,从而对水滴产生吸力。表面加热在纳米室内产生正压,这实际上提升了液滴。这种热响应行为在 25 到 55 °C 之间的至少五个循环中显示是可逆的。MGNT 产生的粘附力达到 14.2 N cm-2,即使表面倾斜或完全倒置也足以固定水滴。本研究中的 MGNT 阵列代表具有可切换接触界面的仿生类似物,其行为可以通过改变表面温度来简单控制。这实际上提升了水滴。这种热响应行为在 25 到 55 °C 之间的至少五个循环中显示是可逆的。MGNT 产生的粘附力达到 14.2 N cm-2,即使表面倾斜或完全倒置也足以固定水滴。本研究中的 MGNT 阵列代表具有可切换接触界面的仿生类似物,其行为可以通过改变表面温度来简单控制。这实际上提升了水滴。这种热响应行为在 25 到 55 °C 之间的至少五个循环中显示是可逆的。MGNT 产生的粘附力达到 14.2 N cm-2,即使表面倾斜或完全倒置也足以固定水滴。本研究中的 MGNT 阵列代表具有可切换接触界面的仿生类似物,其行为可以通过改变表面温度来简单控制。
更新日期:2018-03-01
down
wechat
bug