当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2017-11-20 , DOI: 10.1016/j.apcatb.2017.11.041
Zhao Mo , Hui Xu , Zhigang Chen , Xiaojie She , Yanhua Song , Jingjie Wu , Pengcheng Yan , Li Xu , Yucheng Lei , Shouqi Yuan , Huaming Li

High-yield and uniform-size graphitic carbon nitride nanotubes (g-C3N4 nanotubes) with abundant nitrogen defects are synthesized for the first time by a green and acid-alkali-free synthesis using a sole melamine precursor. This approach utilizes the slow in-situ conversion of part of melamine into cyanuric acid and consequent molecular self-assembly with the rest of melamine to form supramolecular intermediate. The following pyrolysis converts the supramolecular intermediate to g-C3N4 nanotubes with abundant nitrogen defects. The morphology thus resulted preferable performance than the traditional molecular self-assembly in which the mixture of melamine and cyanuric acid is used as precursors. The g-C3N4 nanotubes with orderly tubular morphology of length-diameter ratio of 30–70 exhibit excellent hydrogen evolution rate (118.5 μmol h−1), which is obviously superior to the bulk g-C3N4. The apparent quantum efficiency of g-C3N4 nanotubes under irradiation at 420 nm is achieved at 6.8%, which is among the top of one dimensional (1D) g-C3N4 structure, such as g-C3N4 nanotubes, nanowires and nanorods. The improved photocatalytic performance benefits from the tubular structure and the nitrogen defects, which lead to the improved optical absorption, more exposed active edges, nitrogen defects active sites, enhanced charge transfer and separation efficiency, higher surface area, fast and long-distance electron transport, and longer fluorescence lifetime. Beside hydrogen evolution reaction, the g-C3N4 nanotubes also have broad applications in environmental treatment and photoelectrochemical detection of organic dyes.



中文翻译:

缺陷工程石墨碳氮化碳纳米管的自组装合成,可有效转换太阳能

通过单一的三聚氰胺前体,通过绿色和无酸碱合成法首次合成了具有大量氮缺陷的高产且尺寸均匀的石墨氮化碳纳米管(gC 3 N 4纳米管)。该方法利用了部分三聚氰胺的缓慢原位转化为氰尿酸,并随后与其余三聚氰胺进行分子自组装以形成超分子中间体。随后的热解将超分子中间体转化为具有大量氮缺陷的gC 3 N 4纳米管。因此,形态比传统的分子自组装性能更好,在传统的分子自组装中,三聚氰胺和氰尿酸的混合物被用作前体。gC 3 N长径比为30-70的有序管状形态的4个纳米管表现出优异的氢释放速率(118.5μmolh -1),明显优于块状gC 3 N 4。gC 3 N 4纳米管在420 nm辐射下的表观量子效率达到6.8%,处于一维(1D)gC 3 N 4结构(例如gC 3 N 4)的顶部。纳米管,纳米线和纳米棒。改善的光催化性能得益于管状结构和氮缺陷,这导致了更好的光吸收,更多的活性边缘暴露,氮缺陷的活性位点,增强的电荷转移和分离效率,更大的表面积,快速的长距离电子传输,荧光寿命更长。除了氢释放反应,gC 3 N 4纳米管在环境处理和有机染料的光电化学检测中也有广泛的应用。

更新日期:2017-11-20
down
wechat
bug