当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications
Nano Letters ( IF 10.8 ) Pub Date : 2017-11-13 00:00:00 , DOI: 10.1021/acs.nanolett.7b03437
Joon Sang Kang 1 , Huan Wu 1 , Yongjie Hu 1
Affiliation  

Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of boron phosphide. The present study paves the way toward the establishment of a new framework, based on the phonon spectra–material structure relationship, for the rational design of high thermal conductivity materials and nano- to multiscale devices.

中文翻译:

高导热率合成磷化硼的热学性质和声子光谱表征

随着器件不断缩小到纳米级,散热是现代电子学和光子学中越来越关键的技术挑战。为了解决这一挑战,迫切需要能够有效散发热点热量并改善器件性能的高导热率材料。磷化硼是一种独特的高导热率和耐火材料,具有出色的化学惰性,硬度和高热稳定性,在许多实际应用中都具有很高的前景。然而,到目前为止,磷化硼的合成和表征面临的挑战阻碍了对其基本性质和潜在应用的理解。在这里,我们描述了基于协同合成实验模型方法的系统热传输研究:我们已经化学合成了高质量的磷化硼单晶,并在室温下将其热导率测量为创纪录的460 W / mK。通过纳米级的弹道传输,我们首次绘制了磷化硼的声子谱图,并在考虑自然和纯同位素丰度的情况下,通过实验测量了其声子平均自由程谱。我们还测量了温度和尺寸相关的热导率,并通过使用减少了方差的蒙特卡洛方法求解了三维和光谱相关的声子玻尔兹曼输运方程,进行了相应的计算。实验结果与多尺度模拟和密度泛函理论预测的结果吻合良好,它们一起量化了通过依赖声子模式的散射过程的热传导。我们的发现凸显了磷化硼作为高导热率材料在各种应用(包括热管理和能量调节)中的应用前景,并提供了对磷化硼的声子光谱和热传输机理的详细,微观的理解。本研究为基于声子光谱与材料结构关系的新框架的建立铺平了道路,以合理设计高导热率的材料以及纳米级至多尺度的器件。并提供了对磷化硼的声子光谱和热传输机理的详细,微观的了解。本研究为基于声子光谱与材料结构关系的新框架的建立铺平了道路,以合理设计高导热率的材料以及纳米级至多尺度的器件。并提供了对磷化硼的声子光谱和热传输机理的详细,微观的了解。本研究为基于声子光谱与材料结构关系的新框架的建立铺平了道路,以合理设计高导热率的材料以及纳米级至多尺度的器件。
更新日期:2017-11-14
down
wechat
bug