当前位置: X-MOL 学术Org. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid organic light-emitting device based on ultrasonic spray-coating molybdenum trioxide transport layer with low turn-on voltage, improved efficiency & stability
Organic Electronics ( IF 3.2 ) Pub Date : 2017-10-31 , DOI: 10.1016/j.orgel.2017.10.041
Shihao Liu , Xiang Zhang , Shirong Wang , Haiwei Feng , Jiaxin Zhang , Huishan Yang , Letian Zhang , Wenfa Xie

Hybrid organic light-emitting devices (OLEDs) employing inorganic oxides as carrier transport layer can further improve the performances of OLEDs, such as power efficiency, reduce turn-on voltage and enhance stability. Vacuum thermal evaporating (VTE) and ultrasonic spray coating (USC) molybdenum trioxide (MoO3) films with the thickness of 60 nm are used as hole transport layer (HTL) to realized hybrid OLEDs. USC-MoO3 based OLED performs much better than VTE-MoO3 based OLED. Atom forces microscope images shows that both VTE-MoO3 film and emitting layer deposited on it have an extremely rough surface, offering convenient entrance ports for the intrusion of oxygen and water vapor into organic function layer. Nevertheless, USC MoO3 film and emitting layer deposited on it exhibit much smoother surface so that oxygen and water vapor must completely destroy the metal cathode before they intrude in the organic function layers. Besides, to prevent MoO3 quenching excitons, host material with excellent hole transport property is used to restrict exciton recombination region at the interface between emitting layer and electron transport layer. As a result, hybrid OLEDs employing USC-MoO3 as HTL are realized with low turn-on voltage, improved efficiency and stability.



中文翻译:

基于超声喷涂三氧化钼传输层的混合有机发光器件,具有低导通电压,提高了效率和稳定性

采用无机氧化物作为载流子传输层的混合有机发光器件(OLED)可以进一步改善OLED的性能,例如功率效率,降低导通电压并增强稳定性。真空热蒸发(VTE)和超声喷涂(USC)厚度为60 nm的三氧化钼(MoO 3)膜用作空穴传输层(HTL),以实现混合OLED。基于USC-MoO 3的OLED的性能要比基于VTE-MoO 3的OLED更好。原子力显微镜图像显示,VTE-MoO 3膜和沉积在其上的发射层均具有非常粗糙的表面,为氧气和水蒸气侵入有机功能层提供了方便的入口。尽管如此,USC MoO3膜和沉积在其上的发射层的表面要光滑得多,因此氧气和水蒸气必须完全破坏金属阴极,然后才能侵入有机功能层。另外,为了防止MoO 3猝灭激子,使用空穴传输性优异的主体材料来限制发光层与电子传输层之间的界面处的激子复合区域。结果,以低开启电压,提高的效率和稳定性实现了采用USC-MoO 3作为HTL的混合OLED 。

更新日期:2017-10-31
down
wechat
bug