当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering and Optimization of Silicon-Iron-Manganese Nano Alloy Electrode for Enhanced Lithium-ion Battery
Nano-Micro Letters ( IF 26.6 ) Pub Date : 2017-02-06 , DOI: 10.1007/s40820-017-0142-8
Pankaj K. Alaboina , Jong-Soo Cho , Sung-Jin Cho

The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/Alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long term cycling was investigated. The active material loading was maintained very high (~2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/Alloy anodes. In this case, engineering and optimizing the Si/Alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of ~100% over 100 cycles.



中文翻译:

增强锂离子电池硅铁锰纳米合金电极的工程与优化

电池的电化学性能被认为主要取决于电极材料。但是,电极的工程设计和优化也起着至关重要的作用,并且可以将相同的电极材料设计为可提供显着改进的电池。在这项工作中,Si-Fe-Mn纳米材料合金(Si / Alloy)和石墨复合电极在3、5和8吨的不同压延条件下进行了致密化,其对电极孔隙率,电解质润湿性和长期循环的影响为调查。活性物质负载保持很高(〜2 mg cm -2)实施接近商业负荷规模的电极工程。优化致密化以在电极厚度和润湿性之间取得平衡,以实现Si /合金阳极的最佳电化学性能。在这种情况下,对Si /合金复合电极进行工程设计和优化至3吨压延(电极致密度从0.39到0.48 g cm -3)显示出增强的循环稳定性,并在100个循环中保持了约100%的高容量。

更新日期:2017-11-10
down
wechat
bug