当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CsPbBr3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition
Chemistry of Materials ( IF 8.6 ) Pub Date : 2017-11-09 00:00:00 , DOI: 10.1021/acs.chemmater.7b03751
Jacob B. Hoffman 1 , Gary Zaiats 1 , Isaac Wappes 1 , Prashant V. Kamat 1
Affiliation  

All inorganic cesium lead bromide (CsPbBr3) perovskite is a more stable alternative to methylammonium lead bromide (MAPbBr3) for designing high open-circuit voltage solar cells and display devices. Poor solubility of CsBr in organic solvents makes typical solution deposition methods difficult to adapt for constructing CsPbBr3 devices. Our layer-by-layer methodology, which makes use of CsPbBr3 quantum dot (QD) deposition followed by annealing, provides a convenient way to cast stable films of desired thickness. The transformation from QDs into bulk during thermal annealing arises from the resumption of nanoparticle growth and not from sintering as generally assumed. Additionally, a large loss of organic material during the annealing process is mainly from 1-octadecene left during the QD synthesis. Utilizing this deposition approach for perovskite photovoltaics is examined using typical planar architecture devices. Devices optimized to both QD spin-casting concentration and overall CsPbBr3 thickness produce champion devices that reach power conversion efficiencies of 5.5% with a Voc value of 1.4 V. The layered QD deposition demonstrates a controlled perovskite film architecture for developing efficient, high open-circuit photovoltaic devices.

中文翻译:

CsPbBr 3太阳能电池:通过逐层量子点沉积来控制薄膜生长

所有无机铯溴化铅(CsPbBr 3)钙钛矿是甲基铵溴化铅更稳定的替代(MAPbBr 3)用于设计高的开路电压的太阳能电池和显示装置。CsBr在有机溶剂中的溶解性差,使得典型的溶液沉积方法难以适应于构造CsPbBr 3器件。我们使用CsPbBr 3的逐层方法量子点(QD)沉积,然后进行退火,提供了一种方便的方法来流延所需厚度的稳定膜。在热退火过程中,从QD转变为块体的过程是由于纳米颗粒的恢复生长而引起的,而不是通常所假设的烧结引起的。另外,在退火过程中有机材料的大量损失主要来自QD合成过程中残留的1-十八碳烯。使用典型的平面结构设备检查了该沉积方法用于钙钛矿型光伏电池的使用。针对QD旋转浇铸浓度和CsPbBr 3整体厚度进行了优化的器件可生产出一流的器件,在V oc情况下其功率转换效率达到5.5% 的QD值为1.4V。分层的QD沉积演示了可控的钙钛矿薄膜结构,可用于开发高效的高开路光伏器件。
更新日期:2017-11-09
down
wechat
bug