当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations
The Journal of Chemical Physics ( IF 4.4 ) Pub Date : 2017-08-24 , DOI: 10.1063/1.4999905
Omar Demerdash 1, 2 , Yuezhi Mao 1, 2 , Tianyi Liu 1 , Martin Head-Gordon 1, 2 , Teresa Head-Gordon 1, 2, 3, 4
Affiliation  

In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA’s 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.

中文翻译:

使用电子结构计算的能量分解分析评估AMOEBA力场的分子间相互作用的多体贡献

在这项工作中,我们通过与基于绝对局部分子轨道的能量分解方法(ALMO-EDA)进行比较,评估了经典AMOEBA模型代表多体相互作用(如极化,电荷转移以及保利排斥和弥散)的准确性。 )用于水三聚器和各种离子水系统。当分析此处讨论的离子水三聚体系统根据多体扩展的2和3体贡献时,发现在ALMO-EDA下对Pauli排斥和分散的3体贡献可忽略不计,从而支持了AMOEBA的14-7 van der Waals项中的成对加法逼近的有效性。但是,与相应的ALMO-EDA术语相比,AMOEBA会由于电荷转移的缺失效应以及极化距离相关性的不正确而显示出不完全的误差消除。我们追踪较大的2体,然后是3体极化误差,直到AMOEBA中使用的Thole阻尼方案,尽管可以更改Thole阻尼的width参数以提高与ALMO-EDA极化有关平衡点的一致性,但正确的方法是不能复制极化曲线作为分子间距离的函数。结果表明,有必要重新检查AMOEBA力场中使用的阻尼和极化模型,并进一步了解一般可极化力场的公式。我们追踪较大的2体,然后是3体极化误差,直到AMOEBA中使用的Thole阻尼方案,尽管可以更改Thole阻尼的width参数以提高与ALMO-EDA极化有关平衡点的一致性,但正确的方法是不能复制极化曲线作为分子间距离的函数。结果表明,有必要重新检查AMOEBA力场中使用的阻尼和极化模型,并进一步了解一般可极化力场的公式。我们追踪较大的2体,然后是3体极化误差,追踪到AMOEBA中使用的Thole阻尼方案,尽管可以更改Thole阻尼的width参数以改善与ALMO-EDA极化有关平衡点的一致性,不能复制极化曲线作为分子间距离的函数。结果表明,有必要重新检查AMOEBA力场中使用的阻尼和极化模型,并进一步了解一般可极化力场的公式。不能再现作为分子间距离的函数的偏振的正确轮廓。结果表明,有必要重新检查AMOEBA力场中使用的阻尼和极化模型,并进一步了解一般可极化力场的公式。不能再现作为分子间距离的函数的偏振的正确轮廓。结果表明,有必要重新检查AMOEBA力场中使用的阻尼和极化模型,并进一步了解一般可极化力场的公式。
更新日期:2017-11-01
down
wechat
bug