当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The physics of quantum materials
Nature Physics ( IF 19.6 ) Pub Date : 2017-10-30 , DOI: 10.1038/nphys4302
B. Keimer , J. E. Moore

The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.



中文翻译:

量子材料的物理学

所有材料的物理描述都源于量子力学,量子力学描述了原子如何在基本水平上键合和电子相互作用。尽管在许多情况下可以通过宏观上的经典描述来近似这些量子效应,但近年来,人们对材料系统的兴趣日益增长,在这些材料系统中,量子效应仍在更广泛的能量和长度范围内表现出来。此类量子材料包括超导体,石墨烯,拓扑绝缘体,Weyl半金属,量子自旋液体和自旋冰。它们中的许多是从减小的尺寸中获得其特性的,特别是从将电子限制到二维片中而获得的。而且,它们往往是不能将电子视为独立粒子,但相互作用强烈并产生称为准粒子的集体激发的材料。但是,在所有情况下,量子力学效应都会从根本上改变材料的性能。本文通过电子波函数的棱镜来研究量子材料的电子性质,并研究其纠缠和拓扑如何产生多种多样的量子态和相态。与传统的有序状态(也由量子力学,例如铁磁性)驱动的传统有序状态相比,这些描述不那么经典。本文通过电子波函数的棱镜来研究量子材料的电子性质,并研究其纠缠和拓扑如何产生多种多样的量子态和相态。与传统的有序状态(也由量子力学,例如铁磁性)驱动的传统有序状态相比,这些描述不那么经典。本文通过电子波函数的棱镜来研究量子材料的电子性质,并研究其纠缠和拓扑如何产生多种多样的量子态和相态。与传统的有序状态(也由量子力学,例如铁磁性)驱动的传统有序状态相比,这些描述不那么经典。

更新日期:2017-10-30
down
wechat
bug