当前位置: X-MOL 学术Annu. Rev. Cell Dev. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Excitable Signal Transduction Networks in Directed Cell Migration
Annual Review of Cell and Developmental Biology ( IF 11.3 ) Pub Date : 2017-10-06 00:00:00 , DOI: 10.1146/annurev-cellbio-100616-060739
Peter N. Devreotes 1 , Sayak Bhattacharya 2 , Marc Edwards 1 , Pablo A. Iglesias 1, 2 , Thomas Lampert 1 , Yuchuan Miao 1
Affiliation  

Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.

中文翻译:


定向细胞迁移中的兴奋性信号传导网络

尽管可能已经进化出真核细胞定向迁移以逃避营养耗尽,但是它已被广泛用于发育过程中和成年生物中的生理事件。颠覆这些运动会导致疾病,例如癌症。推进和感知的机制极为多样,但是大多数真核细胞通过延伸称为肌醇小球体,假足或板状脂质体的肌动蛋白填充突起或通过扩展小泡来移动。除运动性外,定向迁移还涉及极性和方向感测。这些过程中涉及的数百种基因产物被组织成平行且相互连接的途径的网络。这些成分中的许多成分在刺激作用下并在每个自发延伸的突出部分上被激活或抑制。而且,这些网络显示出兴奋性的标志,包括全有或全无的响应性和波传播。细胞突起是由信号转导波产生的,该信号转导波从起点向外传播并驱动细胞骨架活性。可以通过降低或提高网络激活的阈值来更改传播波的范围,从而改变突起的大小,并且更大,更宽的突起比滑石迁移更有利于滑动或振荡行为。在这里,我们评估了控制定向迁移的可激励网络的各种模型,并概述了关键测试。我们还讨论了这种新兴观点在产生细胞迁移以及整合指导迁移的各种外部线索中的实用性。细胞突起是由信号转导波产生的,该信号转导波从起点向外传播并驱动细胞骨架活性。可以通过降低或提高网络激活的阈值来更改传播波的范围,从而改变突起的大小,并且更大,更宽的突起比滑石迁移更有利于滑动或振荡行为。在这里,我们评估了控制定向迁移的可激励网络的各种模型,并概述了关键测试。我们还讨论了这种新兴观点在产生细胞迁移以及整合指导迁移的各种外部线索中的实用性。细胞突起是由信号转导波产生的,该信号转导波从起点向外传播并驱动细胞骨架活性。可以通过降低或提高网络激活的阈值来更改传播波的范围,从而改变突起的大小,并且更大,更宽的突起比滑石迁移更有利于滑动或振荡行为。在这里,我们评估了控制定向迁移的可激励网络的各种模型,并概述了关键测试。我们还讨论了这种新兴观点在产生细胞迁移以及整合指导迁移的各种外部线索中的实用性。可以通过降低或提高网络激活的阈值来更改传播波的范围,从而改变突起的大小,并且更大,更宽的突起比滑石迁移更有利于滑动或振荡行为。在这里,我们评估了控制定向迁移的可激励网络的各种模型,并概述了关键测试。我们还讨论了这种新兴观点在产生细胞迁移以及整合指导迁移的各种外部线索中的实用性。可以通过降低或提高网络激活的阈值来更改传播波的范围,从而改变突起的大小,并且更大,更宽的突起比滑石迁移更有利于滑动或振荡行为。在这里,我们评估了控制定向迁移的可激励网络的各种模型,并概述了关键测试。我们还讨论了这种新兴观点在产生细胞迁移以及整合指导迁移的各种外部线索中的实用性。

更新日期:2017-10-06
down
wechat
bug