当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomass Gasification in an Innovative Spouted-Bed Solar Reactor: Experimental Proof of Concept and Parametric Study
Energy & Fuels ( IF 5.3 ) Pub Date : 2017-09-25 00:00:00 , DOI: 10.1021/acs.energyfuels.7b01839
Quentin Bellouard 1, 2, 3 , Stéphane Abanades 1 , Sylvain Rodat 2, 3
Affiliation  

Solar thermochemical gasification of lignocellulosic biomass promises a new path for the production of alternative fuels as well as storage and transport of solar energy as a convertible and transportable fuel. The use of concentrated solar energy as the external heat source for the high-temperature reaction allows the production of high-value syngas with both higher energy conversion efficiency and reduced cost of gas cleaning and separation, while saving biomass feedstock. A newly designed solar reactor based on the principle of a spouted bed reactor was used for continuous solar-driven gasification of biomass particles. The reliable operation of this 1.5 kW reactor was experimentally demonstrated under real solar irradiation using a parabolic dish solar concentrator. Several types of biomass particles were continuously fed into the reactor at temperatures ranging from 1100 to 1400 °C. The injected particles consisted of beech wood or a mix of resinous wood with size ranging from 0.3 to 2 mm. The aim of this study was to achieve a proof of concept for the novel solar reactor applied to biomass gasification. A parametric study of the gasification conditions was realized to optimize the syngas production. The influence of temperature, oxidizing agent nature (H2O or CO2) and flow rate, heating configuration (direct or indirect irradiation), biomass type, particles size, and feeding rate on gas yield and composition was investigated. The syngas yield increased drastically with the temperature for both steam and CO2 gasification, while increasing the steam content favored H2 and reduced CO production. Maximum amounts of produced syngas over 70 mmol/gbiomass and carbon conversion rates over 90% were achieved. The biomass energy content was solar-upgraded by a factor of 1.10 at 1400 °C.

中文翻译:

创新的喷头式太阳能反应器中的生物质气化:概念和参数研究的实验证明

木质纤维素生物质的太阳能热化学气化为替代燃料的生产以及作为可转换和可运输燃料的太阳能的存储和运输开辟了一条新途径。使用集中的太阳能作为高温反应的外部热源,可以生产高价值的合成气,同时具有较高的能量转换效率和降低的气体净化和分离成本,同时节省了生物质原料。基于喷床反应器原理的新设计的太阳能反应器用于太阳能驱动的生物质颗粒的连续气化。在抛物线形太阳能聚光器的实际太阳辐射下,通过实验证明了该1.5 kW反应堆的可靠运行。将几种类型的生物质颗粒在1100至1400°C的温度下连续进料到反应器中。注入的颗粒由山毛榉木或大小为0.3至2毫米的树脂木混合物组成。这项研究的目的是为应用于生物质气化的新型太阳能反应堆提供概念验证。实现了对气化条件的参数研究,以优化合成气的生产。温度的影响,氧化剂的性质(H 实现了对气化条件的参数研究,以优化合成气的生产。温度的影响,氧化剂的性质(H 实现了对气化条件的参数研究,以优化合成气的生产。温度的影响,氧化剂的性质(H研究了2 O或CO 2)和流量,加热方式(直接或间接照射),生物质类型,颗粒大小以及进料速率对气体收率和组成的影响。合成气产率随蒸汽和CO 2气化的温度而急剧增加,而增加蒸汽含量有利于H 2并减少CO的产生。实现了超过70 mmol / g生物质的最大合成气产量和超过90%的碳转化率。在1400°C下,生物质能含量被太阳能提升了1.10倍。
更新日期:2017-09-26
down
wechat
bug