当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solution-Processed Lithium-Doped ZnO Electron Transport Layer for Efficient Triple Cation (Rb, MA, FA) Perovskite Solar Cells
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2017-09-25 00:00:00 , DOI: 10.1021/acsami.7b09153
Md Arafat Mahmud 1 , Naveen Kumar Elumalai 1 , Mushfika Baishakhi Upama 1 , Dian Wang 1 , Arman Mahboubi Soufiani 1 , Matthew Wright 1 , Cheng Xu 1 , Faiazul Haque 1 , Ashraf Uddin 1
Affiliation  

The current work reports the lithium (Li) doping of a low-temperature processed zinc oxide (ZnO) electron transport layer (ETL) for highly efficient, triple-cation-based MA0.57FA0.38Rb0.05PbI3 (MA: methylammonium, FA: formamidinium, Rb: rubidium) perovskite solar cells (PSCs). Lithium intercalation in the host ZnO lattice structure is dominated by interstitial doping phenomena, which passivates the intrinsic defects in ZnO film. In addition, interstitial Li doping also downshifts the Fermi energy position of Li-doped ETL by 30 meV, which contributes to the reduction of the electron injection barrier from the photoactive perovskite layer. Compared to the pristine ZnO, the power conversion efficiency (PCE) of the PSCs incorporating lithium-doped ZnO (Li-doped) is raised from 14.07 to 16.14%. The superior performance is attributed to the reduced current leakage, enhanced charge extraction characteristics, and mitigated trap-assisted recombination phenomena in Li-doped devices, thoroughly investigated by means of electrochemical impedance spectroscopy (EIS) analysis. Li-doped PSCs also exhibit lower photocurrent hysteresis than ZnO devices, which is investigated with regard to the electrode polarization phenomena of the fabricated devices.

中文翻译:

溶液处理的掺锂的ZnO电子传输层,用于高效的三阳离子(Rb,MA,FA)钙钛矿太阳能电池

当前的工作报道了低温处理的氧化锌(ZnO)电子传输层(ETL)的锂(Li)掺杂,用于高效的基于三阳离子的MA 0.57 FA 0.38 Rb 0.05 PbI 3(MA:甲基铵,FA:甲R,Rb:))钙钛矿太阳能电池(PSC)。主体ZnO晶格结构中的锂嵌入主要受间隙掺杂现象的影响,间隙掺杂现象钝化了ZnO薄膜中的固有缺陷。另外,间隙性锂掺杂还将锂掺杂的ETL的费米能量位置下移30 meV,这有助于减少来自光敏钙钛矿层的电子注入势垒。与原始ZnO相比,掺锂掺杂ZnO(掺锂)的PSC的功率转换效率(PCE)从14.07%提高到16.14%。优异的性能归因于掺杂锂的器件中电流泄漏的减少,电荷提取特性的增强以及陷阱辅助的重组现象的减轻,通过电化学阻抗谱(EIS)分析进行了彻底的研究。掺杂锂的PSC还显示出比ZnO器件低的光电流滞后现象,这是针对所制造器件的电极极化现象进行研究的。
更新日期:2017-09-26
down
wechat
bug