当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new design for an artificial cell: polymer microcapsules with addressable inner compartments that can harbor biomolecules, colloids or microbial species
Chemical Science ( IF 8.4 ) Pub Date : 2017-08-17 00:00:00 , DOI: 10.1039/c7sc01335c
Annie Xi Lu 1, 2, 3, 4 , Hyuntaek Oh 1, 2, 3, 4 , Jessica L. Terrell 2, 3, 4, 5 , William E. Bentley 1, 2, 3, 4, 5 , Srinivasa R. Raghavan 1, 2, 3, 4, 5
Affiliation  

Eukaryotic cells have an architecture consisting of multiple inner compartments (organelles) such as the nucleus, mitochondria, and lysosomes. Each organelle is surrounded by a distinct membrane and has unique internal contents; consequently, each organelle has a distinct function within the cell. In this study, we create biopolymer microcapsules having a compartmentalized architecture as in eukaryotic cells. To make these capsules, we present a biocompatible method that solely uses aqueous media (i.e., avoids the use of oil phases), requires no sacrificial templates, and employs a minimal number of steps. Our approach exploits the electrostatic complexation of oppositely charged polymers dissolved in aqueous media. Specifically, droplets of an anionic biopolymer are generated using a simple microcapillary device, with the droplets being sheared off the capillary tip by pulses of gas (air or nitrogen). The liquid droplets are then introduced into a reservoir whereupon they encounter multivalent cations as well as a cationic biopolymer; thereby, a solid shell is formed around each droplet by electrostatic interactions between the polymers while the core is ionically cross-linked into a gel. In the next step, a discrete number of these capsules are encapsulated within a larger outer capsule by repeating the same process with a wider capillary. Our approach allows us to control the overall diameter of these multicompartment capsules (MCCs) (∼300–500 μm), the diameters of the inner compartments (∼100–300 μm), and the number of inner compartments in an MCC (1 to >5). More importantly, we can encapsulate different payloads in each of the inner compartments, including colloidal particles, enzymes, and microbial cells, in all cases preserving their native functions. A hallmark of biological cells is the existence of cascade processes, where products created in one organelle are transported and used in another. As an initial demonstration of the capabilities afforded by our MCCs, we study a simple cascade process involving two strains of bacteria (E. coli), which communicate through small molecules known as autoinducers. In one compartment of the MCC, we cultivate E. coli that produces autoinducer 2 (AI-2) in the presence of growth media. The AI-2 then diffuses into an adjacent compartment within the MCC wherein a reporter strain of E. coli is cultivated. The reporter E. coli imbibes the AI-2 and in turn, produces a fluorescence response. Thus, the action (AI-2 production) and response (fluorescence signal) are localized within different compartments in the same MCC. We believe this study is an important advance in the path towards an artificial cell.

中文翻译:

人造细胞的新设计:具有可寻址内部隔室的聚合物微囊,可以容纳生物分子,胶体或微生物物种

真核细胞的结构由多个内部区室(细胞器)组成,例如细胞核,线粒体和溶酶体。每个细胞器都被独特的膜包围,并具有独特的内部成分。因此,每个细胞器在细胞内具有不同的功能。在这项研究中,我们创建了具有如真核细胞中的分隔结构的生物聚合物微胶囊。为了制造这些胶囊,我们提出了一种生物相容性方法,该方法仅使用水性介质(,避免使用油相),不需要牺牲模板,并采用最少的步骤。我们的方法利用溶解在水性介质中的带相反电荷的聚合物的静电络合。具体地,使用简单的微毛细管装置产生阴离子生物聚合物的液滴,并且通过气体(空气或氮气)的脉冲将液滴从毛细管尖端切下。然后将液滴引入储器中,然后它们会遇到多价阳离子以及阳离子生物聚合物。因此,在核之间离子交联成凝胶的同时,通过聚合物之间的静电相互作用,在每个液滴周围形成了一个固体壳。在下一步中,通过用较宽的毛细管重复相同的过程,将离散数量的这些胶囊封装在较大的外部胶囊中。我们的方法允许我们控制这些多隔室胶囊(MCC)的总直径(〜300–500μm),内部隔室的直径(〜100–300μm)以及MCC中内部隔室的数量(1至> 5)。更重要的是,我们可以在每个内部隔室中封装不同的有效载荷,包括胶体颗粒,酶和微生物细胞,在所有情况下都保留其固有功能。生物细胞的标志是级联过程的存在,在此过程中,一个细胞器中产生的产物将被运输并用于另一细胞器中。为了初步证明我们的MCC提供的功能,我们研究了一个简单的级联过程,涉及两个细菌菌株(内部隔室的直径(〜100–300μm),以及MCC中内部隔室的数量(1到> 5)。更重要的是,我们可以在每个内部隔室中封装不同的有效载荷,包括胶体颗粒,酶和微生物细胞,在所有情况下都保留其固有功能。生物细胞的标志是级联过程的存在,在此过程中,一个细胞器中产生的产物被运输并用于另一细胞器中。为了初步证明我们的MCC提供的功能,我们研究了一个简单的级联过程,涉及两个细菌菌株(内部隔室的直径(〜100–300μm),以及MCC中内部隔室的数量(1到> 5)。更重要的是,我们可以在每个内部隔室中封装不同的有效载荷,包括胶体颗粒,酶和微生物细胞,在所有情况下都保留其固有功能。生物细胞的标志是级联过程的存在,在此过程中,一个细胞器中产生的产物将被运输并用于另一细胞器中。为了初步证明我们的MCC提供的功能,我们研究了一个简单的级联过程,涉及两个细菌菌株(在所有情况下都保留其本机功能。生物细胞的标志是级联过程的存在,在此过程中,一个细胞器中产生的产物将被运输并用于另一细胞器中。为了初步证明我们的MCC提供的功能,我们研究了一个简单的级联过程,涉及两个细菌菌株(在所有情况下都保留其本机功能。生物细胞的标志是级联过程的存在,在此过程中,一个细胞器中产生的产物将被运输并用于另一细胞器中。为了初步证明我们的MCC提供的功能,我们研究了一个简单的级联过程,涉及两个细菌菌株(大肠杆菌(E. coli),通过称为自动诱导剂的小分子进行通讯。在“我的客户中心”的一个隔间中,我们在生长培养基的存在下培养产生自动诱导物2(AI-2)的大肠杆菌。然后,AI-2扩散到MCC内的相邻隔室中,在其中培养出大肠杆菌的报告菌株。报告大肠杆菌吸收AI-2并产生荧光反应。因此,作用(AI-2产生)和响应(荧光信号)位于同一MCC的不同隔室内。我们相信这项研究是朝着人造细胞发展的重要一步。
更新日期:2017-09-25
down
wechat
bug