当前位置: X-MOL 学术Circulation › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Binding of FUN14 Domain Containing 1 With Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts in Vivo
Circulation ( IF 37.8 ) Pub Date : 2017-12-05 , DOI: 10.1161/circulationaha.117.030235
Shengnan Wu 1 , Qiulun Lu 1 , Qilong Wang 1 , Ye Ding 1 , Zejun Ma 1 , Xiaoxiang Mao 1 , Kai Huang 1 , Zhonglin Xie 1 , Ming-Hui Zou 1
Affiliation  

Background: FUN14 domain containing 1 (FUNDC1) is a highly conserved outer mitochondrial membrane protein. The aim of this study is to examine whether FUNDC1 modulates the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondrial morphology, and function in cardiomyocytes and intact hearts.
Methods: The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout (Fundc1f/Y/CreαMyHC+/−), and in the cardiac tissues of the patients with heart failure.
Results: In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP3R2). Fundc1 ablation disrupted MAMs and reduced the levels of IP3R2 and Ca2+ in both mitochondria and cytosol, whereas overexpression of Fundc1 increased the levels of IP3R2 and Ca2+ in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca2+ levels in ER, whereas Fundc1 overexpression lowered ER Ca2+ levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca2+ levels suppressed mitochondrial fission 1 protein (Fis1) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1f/Y/CreαMyHC+/− mice but not their littermate control mice (Fundc1wt/Y/CreαMyHC+/−) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1f/Y/CreαMyHC+/− mice caused more severe cardiac dysfunction than those in sham-treated Fundc1f/Y/CreαMyHC+/− mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in patients with heart failure.
Conclusions: We conclude that FUNDC1 binds to IP3R2 to modulate ER Ca2+ release into mitochondria and cytosol. Further, a disruption of the FUNDC1 and IP3R2 interaction lowers the levels of Ca2+ in mitochondria and cytosol, both of which instigate aberrant mitochondrial fission, mitochondrial dysfunction, cardiac dysfunction, and heart failure.


中文翻译:

包含1的FUN14域与线粒体相关的内质网膜的肌醇1、4、5-三磷酸受体的结合维持体内心脏的线​​粒体动力学和功能。

背景:包含1的FUN14域(FUNDC1)是高度保守的线粒体外膜蛋白。这项研究的目的是检查FUNDC1是否调节心肌细胞和完整心脏中与线粒体相关的内质网(ERM)膜,线粒体形态以及功能。
Methods: The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout (Fundc1f/Y/CreαMyHC+/−), and in the cardiac tissues of the patients with heart failure.
Results: In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP3R2). Fundc1 ablation disrupted MAMs and reduced the levels of IP3R2 and Ca2+ in both mitochondria and cytosol, whereas overexpression of Fundc1 increased the levels of IP3R2 and Ca2+ in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca2+ levels in ER, whereas Fundc1 overexpression lowered ER Ca2+ levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca2+ levels suppressed mitochondrial fission 1 protein (Fis1) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1f/Y/CreαMyHC+/− mice but not their littermate control mice (Fundc1wt/Y/CreαMyHC+/−) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1f/Y/CreαMyHC+/− mice caused more severe cardiac dysfunction than those in sham-treated Fundc1f/Y/CreαMyHC+/− mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in patients with heart failure.
Conclusions: We conclude that FUNDC1 binds to IP3R2 to modulate ER Ca2+ release into mitochondria and cytosol. Further, a disruption of the FUNDC1 and IP3R2 interaction lowers the levels of Ca2+ in mitochondria and cytosol, both of which instigate aberrant mitochondrial fission, mitochondrial dysfunction, cardiac dysfunction, and heart failure.
更新日期:2017-12-05
down
wechat
bug