当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coordination‐Accelerated “Iron Extraction” Enables Fast Biodegradation of Mesoporous Silica‐Based Hollow Nanoparticles
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2017-09-21 , DOI: 10.1002/adhm.201700720
Liying Wang 1, 2, 3 , Minfeng Huo 1, 3 , Yu Chen 1 , Jianlin Shi 1
Affiliation  

Biodegradation behavior of inorganic silica‐based nanoplatforms is of critical importance in their clinical translations, but still remains a great challenge in achieving this goal by composition regulation of biocompatible silica framework. In the present work, a chemical coordination‐accelerated biodegradation strategy to endow hollow mesoporous silica nanoparticles (HMSNs) with unique coordination‐responsive biodegradability, on‐demand coordination‐responsive drug releasing behavior, and significantly enhanced chemotherapeutic efficacy by directly doping iron (Fe) ions into the framework of mesoporous silica is reported. A simple but versatile dissolution‐regrowth strategy has been developed to enable the framework Fe doping via chemical bonding. The deferiprone‐mediated biodegradation of Fe‐doped HMSNs (Fe‐HMSNs) has been comprehensively evaluated both in simulated body fluid and intracellular level, which have exhibited a specific coordination‐accelerated biodegradation behavior. In addition to high biocompatibility of Fe‐HMSNs, the anticancer drug doxorubicin (DOX)‐loaded Fe‐HMSNs show enhanced tumor‐suppressing effect on 4T1 mammary cancer xenograft. This work paves a new way for tuning the biodegradation performance of mesoporous silica‐based nanoplatforms simply by biocompatible Fe‐ion doping into silica framework based on the specific coordination property between introduced metal Fe ions with Fe‐coordination proteins.

中文翻译:

协调加速的“铁提取”可实现基于介孔二氧化硅的空心纳米粒子的快速生物降解。

无机二氧化硅基纳米平台的生物降解行为在其临床翻译中至关重要,但在通过调节生物相容性二氧化硅骨架的组成来实现这一目标方面仍然面临巨大挑战。在当前的工作中,一种化学配位加速生物降解策略赋予空心中孔二氧化硅纳米粒子(HMSNs)独特的配位响应生物降解能力,按需配位响应药物释放行为,并通过直接掺杂铁(Fe)显着增强了化学治疗功效据报道,离子进入了介孔二氧化硅的骨架。已经开发了一种简单但用途广泛的溶解-再生策略,以通过化学键合使骨架掺杂铁。去铁酮介导的Fe掺杂HMSNs(Fe-HMSNs)的生物降解已在模拟体液和细胞内水平进行了全面评估,显示出特定的配位促进生物降解行为。除了Fe‐HMSNs的高生物相容性外,载有抗癌药阿霉素(Fex)的Fe‐HMSNs还对4T1乳腺癌异种移植物显示出增强的肿瘤抑制作用。这项工作为基于介导的金属Fe离子与Fe配位蛋白之间的特定配位特性,通过将生物相容的Fe离子掺杂到二氧化硅骨架中而简单地调节介孔二氧化硅基纳米平台的生物降解性能开辟了一条新途径。除了Fe‐HMSNs的高生物相容性外,载有抗癌药阿霉素(Fex)的Fe‐HMSNs还对4T1乳腺癌异种移植物显示出增强的肿瘤抑制作用。这项工作为基于介导的金属Fe离子与Fe配位蛋白之间的特定配位特性,通过将生物相容的Fe离子掺杂到二氧化硅骨架中而简单地调节介孔二氧化硅基纳米平台的生物降解性能开辟了一条新途径。除了Fe‐HMSNs的高生物相容性外,载有抗癌药阿霉素(Fex)的Fe‐HMSNs还对4T1乳腺癌异种移植物显示出增强的肿瘤抑制作用。这项工作为基于介导的金属Fe离子与Fe配位蛋白之间的特定配位特性,通过将生物相容的Fe离子掺杂到二氧化硅骨架中而简单地调节介孔二氧化硅基纳米平台的生物降解性能开辟了一条新途径。
更新日期:2017-09-21
down
wechat
bug