当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
WO3 and W Thermal Atomic Layer Etching Using “Conversion-Fluorination” and “Oxidation-Conversion-Fluorination” Mechanisms
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2017-09-21 00:00:00 , DOI: 10.1021/acsami.7b09161
Nicholas R. Johnson 1 , Steven M. George 1
Affiliation  

The thermal atomic layer etching (ALE) of WO3 and W was demonstrated with new “conversion-fluorination” and “oxidation-conversion-fluorination” etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO3 ALE was achieved by a “conversion-fluorination” mechanism using an AB exposure sequence with boron trichloride (BCl3) and hydrogen fluoride (HF). BCl3 converts the WO3 surface to a B2O3 layer while forming volatile WOxCly products. Subsequently, HF spontaneously etches the B2O3 layer producing volatile BF3 and H2O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl3 and HF reactions were self-limiting versus exposure. The WO3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl3 and HF could not etch the underlying W film. W ALE was performed using a three-step “oxidation-conversion-fluorination” mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO3 layer using O2/O3. Subsequently, the WO3 layer is etched with BCl3 and HF. SE could simultaneously monitor the W and WO3 thicknesses and conversion of W to WO3. SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

中文翻译:

使用“转化-氟化”和“氧化-转化-氟化”机理的WO 3和W热原子层蚀刻

通过新的“转化氟化”和“氧化转化氟化”刻蚀机理证明了WO 3和W的热原子层刻蚀(ALE)。这两种机制都是基于顺序的自限反应。WO 3 ALE是通过“转化氟化”机理,使用AB暴露顺序以及三氯化硼(BCl 3)和氟化氢(HF)来实现的。BCl 3将WO 3表面转化为B 2 O 3层,同时形成挥发性的WO x Cl y产物。随后,HF自发地蚀刻B 2 O 3层,产生挥发性BF3和H 2 O产品。原位光谱椭偏(SE)研究确定BCl 3和HF反应是自限的,相对于暴露是自限的。WO 3 ALE蚀刻速率随温度从128°C的0.55Å/循环增加到207°C的4.19Å/循环而增加。W用作蚀刻停止层,因为BCl 3和HF无法蚀刻下面的W膜。使用三个步骤的“氧化-转化-氟化”机理进行了W ALE。在该ABC曝光顺序中,首先使用O 2 / O 3将W表面氧化为WO 3层。随后,用BCl 3蚀刻WO 3和HF。SE可以同时监测W和WO 3的厚度以及W向WO 3的转化。SE测量表明,W膜厚度随ABC反应循环次数线性减少。相对于ABC过程中的每个反应,W ALE被证明是自限性的。在207°C下,W ALE的蚀刻速率约为2.5Å/循环。在W ALE之后仍保留约20Å的氧化物厚度,但是可以通过连续的BCl 3和HF暴露去除,而不会影响W层。这些新的蚀刻机制将使多种其他金属材料(包括具有挥发性金属氟化物的金属材料)实现热ALE。
更新日期:2017-09-21
down
wechat
bug